首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the 56 species and 43 genera of Asteraceae tested, 9 were highly resistant or immune to Meloidogyne incognita and did not form root galls. Twenty-six species and six cultivars had 25% or fewer roots galled and were considered moderately resistant to M. incognita. Pre-planting Cosmos bipinnatus (F190), Gaillardia pulchella, Tagetes erecta, Tithonia diversifolia, or Zinnia elegans (F645) reduced root galling and M. incognita J2 in and around Ipomoea reptans. Amendment of soils with roots, stems, or leaves of G. pulchella was effective in controlling M. incognita on I. reptans. Tissue extracts of G. pulchella were lethal to various plant-parasitic nematodes but were innocuous to free-living nematodes. Root exudates of G. pulchella were lethal to J2 of M. incognita and were inhibitory to the hatch of eggs at the concentration of 250 ppm or higher. Gaillardia pulchella could be used to manage M. incognita as a rotation crop, a co-planted crop, or a soil amendment for control of root-knot nematode.  相似文献   

2.
Eggs, either dispersed or in masses, and second-stage juveniles (J2) of Meloidogyne incognita were exposed to different concentrations of ammonium ions in a nutrient agar medium upon which excised tomato roots were growing. Egg hatch and J2 penetration of the roots was slowed or inhibited at high (54 and 324 mg/liter) but not at low (1.5 and 9 mg/liter) concentrations of ammonium nitrate. The effect of ammonium on J2 appeared to be temporary and reversible. High potassium nitrate concentration (1,116 mg/liter) did not modify egg hatch or J2 penetration. There was no adverse effect from the high ammonium nitrate concentrations or an equivalent potassium nitrate concentration on root dry weight. Ammonium ions influence nematodes both directly and via plant roots and do so independently of microbial organisms.  相似文献   

3.

Aims

Arbuscular mycorrhizal fungi (AMF) can control root-knot nematode infection, but the mode of action is still unknown. We investigated the effects of AMF and mycorrhizal root exudates on the initial steps of Meloidogyne incognita infection, namely movement towards and penetration of tomato roots.

Methods

M. incognita soil migration and root penetration were evaluated in a twin-chamber set-up consisting of a control and mycorrhizal (Glomus mosseae) plant compartment (Solanum lycopersicum cv. Marmande) connected by a bridge. Penetration into control and mycorrhizal roots was also assessed when non-mycorrhizal or mycorrhizal root exudates were applied and nematode motility in the presence of the root exudates was tested in vitro.

Results

M. incognita penetration was significantly reduced in mycorrhizal roots compared to control roots. In the twin-chamber set-up, equal numbers of nematodes moved to both compartments, but the majority accumulated in the soil of the mycorrhizal plant compartment, while for the control plants the majority penetrated the roots. Application of mycorrhizal root exudates further reduced nematode penetration in mycorrhizal plants and temporarily paralyzed nematodes, compared with application of water or non-mycorrhizal root exudates.

Conclusions

Nematode penetration was reduced in mycorrhizal tomato roots and mycorrhizal root exudates probably contributed at least partially by affecting nematode motility.  相似文献   

4.
Effects of soil matrix potential on longevity of egg masses of Meloidogyne incognita were determined during simulated winter conditions. Egg masses were recovered from isolated root fragments incubated in field soil at matrix potentials of -0.1, -0.3, -1.0, and -4.0 bars throughout winter survival periods of 10 weeks for tomato roots and 12 weeks for cotton roots. Egg masses were more superficial on cotton roots than on tomato roots and were more easily dislodged from cotton roots during recovery of root fragments by elutriation. The rate of decline in numbers of eggs and J2 per egg mass was greater in wet as compared to dry soils (P = 0.01), with the relationship between numbers of eggs and J2 per egg mass and time being best described by quadratic models. Percentage hatch of recovered eggs declines linearly with time at soil matrix potentials of -0.1 and -0.3 bars, but at -1.0 and -4.0 bars the percentage hatch of recovered eggs increased before declining. Effects of soil matrix potential on numbers of eggs per egg mass and percentage hatch of recovered eggs were consistent with previous reports that low soil moisture inhibits egg hatch before affecting egg development. Estimations of egg population densities during winter survival periods will be affected by ability to recover infected root fragments from the soil without dislodging associated egg masses. There is a need for procedures for extraction of egg masses not attached to roots from the soil.  相似文献   

5.
The effects of broadleaf tobacco, tomato, and black nightshade on juvenile hatch and reproduction of Globodera tabacum tabacum were determined in laboratory and greenhouse experiments. Root exudates from nightshade stimulated greater egg hatch than those from either ''Rutgers'' tomato or ''86-4'' tobacco. Hatch was greater at higher proportions of root exudates for all three plant species. Root exudates from plants greater than 3 weeks old stimulated more hatch than younger plants. No regression relationships existed between plant age and nematode batch. In other experiments, hatch from eggs in cysts was higher for tomato and nightshade after 10 weeks in greenhouse pots compared to tobacco and bare soil. Numbers of second-stage juveniles in eggs in cysts produced from a previous generation on the same host were highest on nightshade and less on tomato and tobacco. Cysts of variable age recovered from field soil had increased hatch in both root exudates or water compared to recently produced cysts from plants in growth chambers. Globodera t. tabacum may be subject to both host and environmentally mediated diapause.  相似文献   

6.
Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper.  相似文献   

7.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

8.
A technique based on physical maceration of root tissue was developed to extract vermiform and swollen stages of Meloidogyne incognita and Rotylenchulus reniformis. Experiments conducted on soybean and tomato evaluated the efficiency of method (stir, grind), NaOC1 concentration (0%, 0.5%), and duration (lx, 2x) on extraction of nematodes and eggs from 60-day-old populations. Root-associated populations of R. reniformis were considerably lower than those of M. incognita, so development of the method focused on the latter. Grinding liberated more nematodes than stirring, but the reverse was true for egg extraction. Among grinding treatments, a duration of 10 seconds in 0.5% NaOCl provided the most efficient extraction of nematodes and eggs. Among stirring treatments, a duration of 10 minutes in 0.5% NaOCl provided the most efficient extraction of eggs. These techniques were compared on soybean roots 30 days older than those on which the procedures were first evaluated, with consistent results.  相似文献   

9.
Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage.  相似文献   

10.
梁朋  陈振德  罗庆熙 《生态学报》2012,32(7):2294-2302
采用盆栽人工接种方法,对番茄嫁接苗进行了抗性评价,研究了番茄嫁接苗叶片中抗氧化酶活性和活性氧代谢的动态变化。结果表明,接种南方根结线虫(J2)后,砧木嫁接苗表现为高抗,自根嫁接苗为高感。通过嫁接换根,与自根嫁接苗相比,砧木嫁接苗明显提高了接穗叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,降低了超氧阴离子(O.2-)产生速率以及过氧化氢(H2O2)和丙二醛(MDA)含量。表明番茄植株体内的活性氧水平和抗氧化酶活性的高低与其抗根结线虫的能力密切相关,较低的活性氧水平和较高的抗氧化酶活性有利于减轻对膜系统的伤害,提高番茄植株的抗根结线虫能力。  相似文献   

11.
Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay.  相似文献   

12.
Five grape rootstocks were inoculated with 0, 100, 1,000, and 10,000 Pratylenchus vulnus. Dogridge and Saltcreek supported low average total numbers of P. vulnus, 136-705/pot, at 12 months after inoculation. Growth of both rootstocks was not affected. Harmony, Couderc 1613, and Ganzin 1 supported high average total numbers, 6-856 times the inoculum levels. Numbers in Harmony continued to increase at all levels but reduced root weight only at the 10,000 level after 12 months. Numbers in Couderc 1613 decreased by 15-30% after 12 months, and root weight was reduced at the 10,000 level. In Ganzin 1, total nematode numbers diminished after 12 months but were still at high levels; growth reduction was proportional to numbers of nematodes added. Meloidogyne incognita, M. javanica, and M. arenaria produced galls and egg masses in Harmony and Couderc 1613 only at 36 C. Galling in Ganzin 1 increased with increasing temperature. Galls in Ganzin 1 at 18 C supported mature females after 90 days. Harmony was resistant to M. incognita in single and concomitant inoculations of P. vulnus and M. incognita. At 250 days after inoculation, total numbers of P. vulnus increased above the inoculum level and the 150-day values; increase was greatest in P. vulnus added singly. Neither nematode species affected growth of Harmony.  相似文献   

13.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

14.
Molecular taxonomy and evolution of nematodes have been recently the focus of several studies. Mitochondrial sequences were proposed as an alternative for precise identification of Meloidogyne species, to study intraspecific variability and to follow maternal lineages. We characterized the mitochondrial genomes (mtDNAs) of the root knot nematodes M. floridensis, M. hapla and M. incognita. These were AT rich (81–83%) and highly compact, encoding 12 proteins, 2 rRNAs, and 22 tRNAs. Comparisons with published mtDNAs of M. chitwoodi, M. incognita (another strain) and M. graminicola revealed that they share protein and rRNA gene order but differ in the order of tRNAs. The mtDNAs of M. floridensis and M. incognita were strikingly similar (97–100% identity for all coding regions). In contrast, M. floridensis, M. chitwoodi, M. hapla and M. graminicola showed 65–84% nucleotide identity for coding regions. Variable mitochondrial sequences are potentially useful for evolutionary and taxonomic studies. We developed a molecular taxonomic marker by sequencing a highly-variable ~2 kb mitochondrial region, nad5-cox1, from 36 populations of root-knot nematodes to elucidate relationships within the genus Meloidogyne. Isolates of five species formed monophyletic groups and showed little intraspecific variability. We also present a thorough analysis of the mitochondrial region cox2-rrnS. Phylogenies based on either mitochondrial region had good discrimination power but could not discriminate between M. arenaria, M. incognita and M. floridensis.  相似文献   

15.
Plant root exudates are compositionally diverse, plastic and adaptive. Ethylene signalling influences the attraction of plant parasitic nematodes, presumably through the modulation of root exudate composition. Understanding this pathway could lead to new sources of crop parasite resistance. Here we used Virus-Induced Gene Silencing to knock down the expression of two Ethylene Response Factor (ERF) genes, ERF-E2 and ERF-E3, in tomato. Root exudates were significantly more attractive to the PPNs Meloidogyne incognita and Globodera pallida following knockdown of ERF-E2, which had no impact on the attraction of Meloidogyne javanica. Knockdown of ERF-E3 had no impact on the attraction of Meloidogyne or Globodera spp. Gas Chromatography Mass Spectrometry analysis revealed major changes in root exudate composition relative to controls. However, these changes did not alter the attraction of rhizosphere microbes Bacillus subtilis or Agrobacterium tumefaciens. This study further supports the potential of engineering plant root exudate for parasite control, through the modulation of plant genes.  相似文献   

16.
The influence of solutions of ascorbic acid, thiamine, L-arginine, and L-gtutamic acid on egg hatch, juvenile survival, and development and reproduction of Meloidogyne incognita in susceptible and resistant tomatoes was studied. Maximum inhibition of egg hatch occurred at 2,000, 4,000, and 2,000 ppm for ascorbic acid, L-arginine, and L-glutamic acid, respectively. Larval survival was significantly reduced by concentrations of 2,000 ppm ascorbic acid and 1,000 ppm of L-arginine. Maximum inhibition of egg hatch and mortality of juveniles was achieved at a concentration of 4,000 ppm of ascorbic acid and L-arginine. L-glutamic acid and thiamine had respective moderate and minimal toxic effects. Foliar sprays of ascorbic acid, L-arginine, or L-glutamic acid suppressed the numbers of root galls, females, and egg masses on the susceptible tomato cultivar Tropic. Ascorbic acid and L-arginine had highly significant effects when applied to foliage before inoculation with nematodes. Thiamine had little effect. All sprays suppressed the numbers of root galls and females in roots of the resistant cultivar VFN8 when treatments were applied before inoculation. They were not, however, effective as post-inoculation treatments. Growth of a susceptible cultivar was improved by post-inoculation and pre-inoculation treatments when compared with the control plants which had neither nematode infection nor chemical treatment. No positive growth response to chemical treatment was seen in resistant control plants.  相似文献   

17.
Extracts from the plants Plantago lanceolata and P. rugelii were evaluated for toxicity to the root-knot nematode Meloidogyne incognita, the beneficial microbes Enterobacter cloacae, Pseudomonas fluorescens and Trichoderma virens, and the plant-pathogenic fungi Fusarium oxysporum f. sp. gladioli, Phytophthora capsici, Pythium ultimum, and Rhizoctonia solani. Wild plants were collected, roots were excised from shoots, and the plant parts were dried and ground to a powder. One set of extracts (10% w/v) was prepared in water and another in methanol. Treatments included extract concentrations of 25%, 50%, 75% and 100%, and water controls. Meloidogyne incognita egg hatch was recorded after 7-day exposure to the treatments, and second-stage juvenile (J2) activity after 48 hours. All extracts were toxic to eggs and J2, with P. lanceolata shoot extract tending to have the most activity against M. incognita. Numbers of active J2 remained the same or decreased in a 24-hour water rinse following the 48-hour extract treatment, indicating that the extracts were lethal. When data from water- and methanol-extracted roots and shoots of both plant species were combined for analysis, J2 tended to be more sensitive than eggs to the toxic compounds at lower concentrations, while the higher concentrations (75% and 100%) were equally toxic to both life stages. The effective concentrations causing 50% reduction (EC50) in egg hatch and in J2 viability were 44.4% and 43.7%, respectively. No extract was toxic to any of the bacteria or fungi in our assays.  相似文献   

18.
Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression.  相似文献   

19.
The motility of Meloidogyne incognita second-stage juveniles (J2) and their ability to induce root galls in tomato were progressively decreased upon exposure to nicotine at concentrations of 1-100 μg/ml. EC₅₀ values ranged from 14.5 to 22.3 μg/ml, but J2 motility and root-gall induction were not eliminated at 100 μg/ml nicotine. Nicotine in both resistant NC 89 and susceptible NC 2326 tobacco roots was increased significantly 4 days after exposure to M. incognita. The increase was greater in resistant than in susceptible tobacco. Root nicotine concentrations were estimated to be 661.1-979.1 μg/g fresh weight. More M. incognita were detected in roots of susceptible than in roots of resistant tobacco. Numbers of nematodes within resistant roots decreased as duration of exposure to M. incognita was increased from 4 to 16 days. Concentrations of nicotine were apparently sufficient to affect M. incognita in both susceptible and resistant tobacco roots. Localization of nicotine at infection sites must be determined to ascertain its association with resistance.  相似文献   

20.
Effects of gamma-irradiation on the root-knot nematode Meloidogyne javanica were investigated. A dose of 7.5 kGy killed all second-stage juveniles (J2) within 1 day after treatment. Egg hatch was completely inhibited at 6.25 kGy. A bioassay on tomato measuring galling and egg production was used to determine the infectivity of irradiated J2 and J2 hatched from irradiated eggs. The J2 and eggs irradiated with a dose of 4.25 kGy did not induce galls or reproduce on tomato plants. When nematodes were exposed to combined irradiation and heat treatment, no synergistic effect on J2 or eggs was measured. Heat treatment at 49° C for 10 minutes or 20 minutes without irradiation immobilized J2 and prevented egg development. Irradiation rates needed to kill or incapacitate M. javanica were high and may be impractical as a quarantine measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号