首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hemoglobin of the lung fish Clarias lazera has a single component on starch gel electrophoresis. The hemoglobin has a molar mass of c. 68,000 similar to HbA on column chromatography. Clarias hemoglobin has a high oxygen affinity with a low Bohr effect. There is a haem-haem interaction, n, which is pH dependent. The R-state is more stable than the T-state, unlike in most fish hemoglobins.  相似文献   

2.
The Bohr effect of hemoglobin and that of the aquomet and cyanomet valency hybrids was measured in the presence and the absence of IHP (inositol hexaphosphate) and DPG (2,3-diphosphoglycerate). In the absence of these organic phosphates the four hybrids show similar, but suppressed Bohr effects as compared to hemoglobin. Addition of IHP and DPG results in all cases in an increase of the Bohr effect. The additional phosphate induced Bohr effect of the hybrids with the alpha chain in the oxidized form is almost identical to that of hemoglobin, while this effect of the hybrids with oxidized beta chains is slighly lower than that of hemoglobin. The results suggest (a) that the Bohr effect is correlated to the ligation state of the hemoglobin molecule rather than to its quaternary structure (b) that the additional phosphate induced Bohr effect is related to the change in quaternary structure of the tetramer, and (c) that with respect to the Bohr effect of the hybrids there is no difference between high and low spin species.  相似文献   

3.
The pH dependence of oxygen affinity of hemoglobin (Bohr effect) is due to ligand-linked pK shifts of ionizable groups. Attempt to identify these groups has produced controversial data and interpretations. In a further attempt to clarify the situation, we noticed that hemoglobin alkylated in its liganded form lost the Bohr effect while hemoglobin alkylated in its unliganded form showed the presence of a practically unmodified Bohr effect. In spite of this difference, analyses of the extent of alkylation of the two compounds failed to identify the presence of specific preferential alkylations. In particular, the alpha 1 valines and beta 146 histidines appeared to be alkylated to the same extent in the two proteins. Focusing our attention on the effect of the anions on the functional properties of hemoglobin, we measured the Bohr effect of untreated hemoglobin in buffers made with HEPES [N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid], MES [2-(N-morpholino)ethanesulfonic acid], and MOPS [3-(N-morpholino)propanesulfonic acid], which being zwitterions do not need addition of chlorides or other anions for reaching the desired pH. The shape acquired by the Bohr effect curves, either as pH dependence of oxygen affinity or as pH dependence of protons exchanged with the solution, was irreconcilable with that of the Bohr effect curves in usual buffers. This indicated the relevance of solvent components in determining the functional properties of hemoglobin. A new thermodynamic model is proposed for the Bohr effect that includes the interaction of hemoglobin with solvent components. The classic proton Bohr effect is a special case of the new theory.  相似文献   

4.
  • 1.1. The hemoglobins of Leporinus friderici were separated by liquid chromatography on DEAE-Sepharose in order to isolate the two major electrophoretic components.
  • 2.2. The chromatographic fraction I (electrophoretically slow anodic) showed no Bohr effect and no nucleoside triphosphate modulation.
  • 3.3. The chromatographic fraction III (electrophoretically fast anodic) showed a normal Bohr effect and addition of nucleoside triphosphate decreased oxygen affinity but did not alter the Bohr effect.
  • 4.4. The whole hemolysate showed a normal Bohr effect and phosphate modulation altered both Bohr effect and oxygen affinity.
  • 5.5. No or little difference between the effect of adenosine or guanosine triphosphates on hemoglobin function was observed.
  相似文献   

5.
1. Tadpole and adult hemoglobin do not differ significantly in molecular weight. The molecular weight of both is in the neighborhood of 68,000. 2. Heme-heme interaction as measured by the value of n in Hill's equation is virtually the same—about 2.8—in both tadpole and adult. 3. There appears to be no significant effect of pH upon the oxygen equilibrium of tadpole hemoglobin, in contrast to large Bohr and reverse Bohr effects in the adult. This is taken to mean that during metamorphosis acid groups of globin become sensitive to the oxygenation of heme by some change in the mode of linkage between heme and globin. 4. The oxygen affinity of tadpole hemoglobin is about seven times as great as that of the adult at pH 6 and twice as great at pH 9.  相似文献   

6.
The effect of the prelethal state on functional properties of hemoglobin has been studied in the goldfish Carassius auratus. A considerable decrease in hemoglobin affinity for oxygen and the Bohr effect values and the change in the shape of the curve of oxygen equilibrium have been detected. Such state may be compared to the effect of strong short-term stress.  相似文献   

7.
The Gymnothorax unicolor hemoglobin system is characterized by two components, called cathodic and anodic on the basis of their isoelectric point, which were separated by ion-exchange chromatography. The oxygen-binding properties of the purified components were studied in the absence and presence of chloride and/or GTP or ATP in the pH range 6.5-8.0. Stripped cathodic hemoglobin showed a small reverse Bohr effect, high oxygen affinity, and low co-operativity; the addition of chloride only caused a small decrease in oxygen affinity. In the presence of GTP or ATP, the oxygen affinity was dramatically reduced, the co-operativity increased, and the reverse Bohr effect abolished. Stripped anodic hemoglobin is characterized by both low oxygen affinity and co-operativity, and displayed a normal Bohr effect; the addition of chloride increased co-operativity, whereas ATP and GTP significantly modulated oxygen affinity at acidic pH values, enhancing the Bohr effect and giving rise to the Root effect. The complete amino-acid sequences of the alpha and beta chains of both hemoglobins were established; the molecular basis of the functional properties of the hemoglobins is discussed in the light of the primary structure and compared with those of other fish hemoglobins.  相似文献   

8.
Using NO and CO as ligands the Bohr effect of human hemoglobin has been measured with and without inositolhexophosphate. It appears that in the absence and presence of inositolhexaphosphate hemoglobin shows a distinct ligand specificity with respect to the Bohr effect. Ligation with NO is accompanied by release of a larger number of Bohr effect. It is shown that this latter result is due to the fact that the number of protons taken up upon binding of inositolhexaphosphate to ligated hemoglobin is larger for HbNO than for HbCO. It is suggested that this additional proton uptake is partially due to a restoration of the saltbridge between His 146beta and Asp 94beta upon addition of IHP.  相似文献   

9.
The results of study of the Bohr effect value for hemoglobins of Russian and Siberian sturgeons, depending on the buffer system molarity are presented. It has been shown that the Bohr effect in the Siberian sturgeon hemoglobin is stable at changes of the buffer molarity, whereas in the Russian surgeon, differences in the Bohr effect values have been revealed at two buffer molarities, depending on its habitat.  相似文献   

10.
The hemoglobin oxidation Bohr effect is larger than the ligation Bohr effect, even when the former is corrected for any ionization of the water molecule bound to the ferric iron of methemoglobin. This residual oxidation Bohr effect is here shown to be solely caused by the influence of the positively charged ferriheme, and is abolished when the oxidized heme binds an anion. This result frees the formal equivalence of hemoglobin ligation and oxidation from the last apparent experimental discrepancy.  相似文献   

11.
The effect of temperature on functional properties of the hemoglobin of crucian carp (Carassius carassius) has been studied. It has been revealed that hemoglobin affinity to oxygen increases with increasing temperature (from 12.0 to 33.4°C) at buffer solution pH 6.6 and molarity of 0.05 and 0.005 M. Under impact of temperature, the Bohr effect does not change. Its value also remains constant with increasing molarity of the buffer system from 0.005 to 0.05 M.  相似文献   

12.
The O2 and CO Bohr effects of monomeric and dimeric hemoglobins of the insect Chironomus thummi thummi were determined as proton releases upon ligation. For the O2 Bohr effect of the monomeric hemoglobin III a maximum value of 0.20 H+/heme was obtained at pH 7.5. Upon ligation with CO, however, only 0.04 H+/heme were released at the same pH. In agreement with this finding isoelectric focusing experiments revealed different isoelectric points for O2-liganded and CO-liganded states of hemoglobin III. Analogous results were obtained in the cases of the monomeric hemoglobin IV and the dimeric hemoglobins of Chironomus thummi thummi; here O2 Bohr effects of 0.43 and 0.86 H+/heme were observed. For the corresponding CO Bohr effects values of 0.08 and 0.31 H+/heme were obtained respectively. On the basis of the available structural data the reduced CO Bohr effect in hemoglobin III is discussed as arising from a steric hindrance of the CO ligand by the side chain of isoleucine-E11, obstructing the movement of the heme-iron upon reaction with carbon monoxide. It should, however, be noted that ligands, according to their different electron donor and acceptor properties, may generally induce different conformational changes and thus different Bohr effects, in those hemoglobins in which distinct tertiary and/or quaternary constraints have not evolved. The general utilization of CO instead of O2 as allosteric effector is ruled out by the results reported here.  相似文献   

13.
The equilibrium between cytochrome oxidase and carbon monoxide   总被引:2,自引:0,他引:2       下载免费PDF全文
An evolution argument which attempted to trace the development of hemoglobins from such respiratory pigments as cytochrome oxidase presupposed that the latter possesses, in addition to its high affinity for oxygen, an approximately hyperbolic equilibrium function, and little if any Bohr effect (decline in affinity for oxygen with rise in acidity). Since cytochrome oxidase, unlike hemoglobin, is irreversibly oxidized by oxygen, the present experiments examine its combination with carbon monoxide, with which, like hemoglobin, it yields a true equilibrium. In all known hemoglobins the form of the equilibrium function and the vigor of the Bohr effect are similar with carbon monoxide and with oxygen, so that observations involving the former gas are relevant to the relations of the latter. The equilibrium function of cytochrome oxidase with carbon monoxide—percentage saturation vs. partial pressure of CO—is slightly inflected (in the Hill equation n = 1.26; for a hyperbola, n = 1). No Bohr effect is present in the range of pH 7–8. The pressure of carbon monoxide at which half-saturation occurs (p50) is about 0.17 mm. at 10–13°C. The affinity for carbon monoxide is therefore higher than commonly supposed. These properties are consistent with the evolution argument. They are important also for the physiological functioning of cytochrome oxidase, the nearly hyperbolic equilibrium function facilitating a high degree of saturation, and the lack of Bohr effect making this enzyme impervious to hyperacidity. The slight inflection of the equilibrium function shows that the Fe-porphyrin units of cytochrome oxidase interact to a degree, hence that the enzyme must contain more than one such unit per molecule. It is suggested that in cytochrome oxidase two Fe-porphyrin groups may unite with one oxygen in the manner Fe++-O2-Fe++; and that the evolution of hemoglobins proceeded over a first stage in which the hemes were separated so that each combines with only one molecule of oxygen, so tending to remain reduced; to a further stage in which the separated hemes interact through the protein to facilitate one another in combining with oxygen.  相似文献   

14.
Alkaline Bohr effect of human hemoglobin Ao   总被引:3,自引:0,他引:3  
  相似文献   

15.
We have investigated the protonation states of histidine residues (potential Bohr groups) in the deoxy form (T state) of human hemoglobin by direct determination of hydrogen (deuterium) positions with the neutron protein crystallography technique. The reversible binding of protons is key to the allosteric regulation of human hemoglobin. The protonation states of 35 of the 38 His residues were directly determined from neutron scattering omit maps, with 3 of the remaining residues being disordered. Protonation states of 5 equivalent His residues—αHis20, αHis50, αHis89, βHis143, and βHis146—differ between the symmetry-related globin subunits. The distal His residues, αHis58 and βHis63, are protonated in the α1β1 heterodimer and are neutral in α2β2. Buried residue αHis103 is found to be protonated in both subunits. These distal and buried residues have the potential to act as Bohr groups. The observed protonation states of His residues are compared to changes in their pKa values during the transition from the T to the R state and the results provide some new insights into our understanding of the molecular mechanism of the Bohr effect.  相似文献   

16.
The normal and differential titration curves of liganded and unliganded hemoglobin were measured at various KCl concentrations (0.1 to 2.0 M). In this range of KCl concentrations, the curves for deoxyhemoglobin showed no salt-induced pK changes of titratable groups. In the same salt concentration range oxyhemoglobin showed a marked change in titration behavior which could only be accounted for by a salt-induced increase in pK of some titratable groups. These results show that the suppression of the alkaline Bohr effect by high concentrations of neutral univalent salt is not caused by a weakening of the salt bridges in deoxyhemoglobin but is due to an interaction of chloride ions with oxyhemoglobin. Measurements of the Bohr effect at various KCl concentrations showed that at low chloride ion concentration (5 times 10-3 M) the alkaline Bohr effect is smaller than at a concentration of 0.1 M. This observation indicates that at a chloride ion concentration of 0.1 M, part of the alkaline Bohr effect is due to an interaction of chloride ions with hemoglobin. Furthermore, at low concentrations of chloride ions the acid Bohr effect has almost vanished. This result suggests that part of the acid Bohr effect arises from an interaction of chloride ions with oxyhemoglobin. The dependence of the Bohr effect upon the chloride ion concentration can be explained by assuming specific binding of chloride ions to both oxy- and deoxyhemoglobin, with deoxyhemoglobin having the highest affinity.  相似文献   

17.
The blood hemoglobin of the sea lamprey presents a curious mixture of primitive and highly specialized properties. Like muscle hemoglobin, it has a molecular weight of about 17,000, and apparently contains a single heme. Its isoelectric point is like that of a typical invertebrate hemoglobin. Its amino acid composition is partly characteristic of invertebrate) partly of vertebrate hemoglobins (Pedersen; Roche and Fontaine). In the present experiments, the oxygen equilibrium curve of this pigment was measured at several pH's. As expected, it is a rectangular hyperbola, the first such function to be observed in a vertebrate blood hemoglobin. Other hemoglobins known to possess this type of oxygen dissociation curve—those of vertebrate muscle, the worm Nippostrongylus, and the bot-fly larva—appear to serve primarily the function of oxygen storage rather than transport. Lamprey hemoglobin on the contrary is an efficient oxygen-transporting agent. It achieves this status by having, unlike muscle hemoglobin, a relatively low oxygen affinity, and a very large Bohr effect. In these properties it rivals the most effective vertebrate blood hemoglobins.  相似文献   

18.
The O2 binding properties of sulfhemoglobin were studied. The oxygen tension required for half-saturation of sulfhemoglobin is more than 2 orders of magnitude higher than that for hemoglobin A. The binding of O2 exhibits an alkaline Bohr effect larger than that observed for hemoglobin, yet the Hill number is unity. From the Bohr titration curve, 0.68 proton is released during O2 binding at 0 degrees C. Sulfhemoglobin prepared from carboxypeptidase A-treated hemoglobin has an affinity for O2 which is about the same as that of sulfhemoglobin at the theoretical limit of the Bohr titration curve. Like its carboxypeptidase A-treated hemoglobin precursor, this sulfhemoglobin does not bind O2 cooperatively. Thus, sulfhemoglobin appears to be in a high affinity form at alkaline pH and a low affinity form at acid pH, similar to hemoglobin A. These results demonstrate that the magnitude of the Hill number is not always an indicator of the interaction between oxygen binding and other functions in a hemoglobin.  相似文献   

19.
Hemoglobin G. Ferrara is an abnormal human hemoglobin in which an asparagine residue is replaced by a lysyl residue at position beta57 (beta57 Asn replaced by Lys). Oxygen equilibria show that cooperativity and alkaline Bohr effect are maintained to normal levels while the acid Bohr effect appears increased; in addition, a smaller effect of diphosphoglycerate is also observed. Flash photolysis experiments performed as a function of protein concentration show that the fraction of quickly reacting form is always higher than that of human hemoglobin A. This fact, together with the increase of the oxygen affinity observed at acid pH values, may be related to an enhanced dissociation of the molecule into dimers. Several attempts to isolate the native chains by treatment of the protein with p-chloromercuribenzoate were unsuccessful due to the great instability of the isolated variant beta-chains, which precipitated completely during incubation with p-chloromercuribenzoate. Therefore, although the substitution is on the surface of the molecule, there are several properties of hemoglobin G. beta Ferrara which are clearly different from hemoglobin A.  相似文献   

20.
Three major components constitute at least 80% of the total hemoglobin in hemolysates of the Rio Grande cichlid, Cichlasoma cyanoguttatum. All three of these appear to share a common β chain. Two components have unique α chains, and the other component has both of these unique α chains.Two of the major components have identical oxygen equilibria. The effects of pH (Bohr effect) and of adenosine triphosphate are the same for each of the three components. Although one of the components has a slightly higher oxygen affinity than the other two the effects of pH and of adenosine triphosphate appear to be indistinguishable in the different components. The Hill coefficient, n, is pH-dependent for all components. The data indicate that the ion exchange chromatography was without effect on the oxygen-binding properties.The oxygen equilibria of the components cannot be interpreted in terms of dimers and appear to require a tetrameric structure of the hemoglobin in the concentration range studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号