首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this piece of work, we attempt to highlight our approach and early experience with minimally invasive aortic valve replacement with aortic Freedom Solo stentless bioprosthesis performed through an upper manubrium-limited ministernotomy in the second intercostal space. The novel suturing technique is required for stentless aortic bioprosthesis implantation, and this, in its turn, will predetermine and influence the surgeon's choice for operative access. In our department, the feasibility of the approach was first assessed; aortic valve was replaced by stentless bioprosthesis in a total of 23 patients (mean age 57 ± 12 years). In all cases, a cardiopulmonary bypass was established by a central ascending aorta cannulation and peripheral percutaneous venous cannula insertion. This approach was found to be technically reproducible and safe. The surgical technique used is described in this article.  相似文献   

2.
3.
Patient-specific computational models are an established tool to support device development and test under clinically relevant boundary conditions. Potentially, such models could be used to aid the clinical decision-making process for percutaneous valve selection; however, their adoption in clinical practice is still limited to individual cases. To be fully informative, they should include patient-specific data on both anatomy and mechanics of the implantation site. In this work, fourteen patient-specific computational models for transcatheter aortic valve replacement (TAVR) with balloon-expandable Sapien XT devices were retrospectively developed to tune the material parameters of the implantation site mechanical model for the average TAVR population.Pre-procedural computed tomography (CT) images were post-processed to create the 3D patient-specific anatomy of the implantation site. Balloon valvuloplasty and device deployment were simulated with finite element (FE) analysis. Valve leaflets and aortic root were modelled as linear elastic materials, while calcification as elastoplastic. Material properties were initially selected from literature; then, a statistical analysis was designed to investigate the effect of each implantation site material parameter on the implanted stent diameter and thus identify the combination of material parameters for TAVR patients.These numerical models were validated against clinical data. The comparison between stent diameters measured from post-procedural fluoroscopy images and final computational results showed a mean difference of 2.5 ± 3.9%. Moreover, the numerical model detected the presence of paravalvular leakage (PVL) in 79% of cases, as assessed by post-TAVR echocardiographic examination.The final aim was to increase accuracy and reliability of such computational tools for prospective clinical applications.  相似文献   

4.
Kan  Xiaoxin  Ma  Tao  Lin  Jing  Wang  Lu  Dong  Zhihui  Xu  Xiao Yun 《Biomechanics and modeling in mechanobiology》2021,20(6):2247-2258

Thoracic endovascular aortic repair (TEVAR) has been accepted as the mainstream treatment for type B aortic dissection, but post-TEVAR biomechanical-related complications are still a major drawback. Unfortunately, the stent-graft (SG) configuration after implantation and biomechanical interactions between the SG and local aorta are usually unknown prior to a TEVAR procedure. The ability to obtain such information via personalised computational simulation would greatly assist clinicians in pre-surgical planning. In this study, a virtual SG deployment simulation framework was developed for the treatment for a complicated aortic dissection case. It incorporates patient-specific anatomical information based on pre-TEVAR CT angiographic images, details of the SG design and the mechanical properties of the stent wire, graft and dissected aorta. Hyperelastic material parameters for the aortic wall were determined based on uniaxial tensile testing performed on aortic tissue samples taken from type B aortic dissection patients. Pre-stress conditions of the aortic wall and the action of blood pressure were also accounted for. The simulated post-TEVAR configuration was compared with follow-up CT scans, demonstrating good agreement with mean deviations of 5.8% in local open area and 4.6 mm in stent strut position. Deployment of the SG increased the maximum principal stress by 24.30 kPa in the narrowed true lumen but reduced the stress by 31.38 kPa in the entry tear region where there was an aneurysmal expansion. Comparisons of simulation results with different levels of model complexity suggested that pre-stress of the aortic wall and blood pressure inside the SG should be included in order to accurately predict the deformation of the deployed SG.

  相似文献   

5.
PurposeThis work describes PETSTEP (PET Simulator of Tracers via Emission Projection): a faster and more accessible alternative to Monte Carlo (MC) simulation generating realistic PET images, for studies assessing image features and segmentation techniques.MethodsPETSTEP was implemented within Matlab as open source software. It allows generating three-dimensional PET images from PET/CT data or synthetic CT and PET maps, with user-drawn lesions and user-set acquisition and reconstruction parameters. PETSTEP was used to reproduce images of the NEMA body phantom acquired on a GE Discovery 690 PET/CT scanner, and simulated with MC for the GE Discovery LS scanner, and to generate realistic Head and Neck scans. Finally the sensitivity (S) and Positive Predictive Value (PPV) of three automatic segmentation methods were compared when applied to the scanner-acquired and PETSTEP-simulated NEMA images.ResultsPETSTEP produced 3D phantom and clinical images within 4 and 6 min respectively on a single core 2.7 GHz computer. PETSTEP images of the NEMA phantom had mean intensities within 2% of the scanner-acquired image for both background and largest insert, and 16% larger background Full Width at Half Maximum. Similar results were obtained when comparing PETSTEP images to MC simulated data. The S and PPV obtained with simulated phantom images were statistically significantly lower than for the original images, but led to the same conclusions with respect to the evaluated segmentation methods.ConclusionsPETSTEP allows fast simulation of synthetic images reproducing scanner-acquired PET data and shows great promise for the evaluation of PET segmentation methods.  相似文献   

6.
Numerical models are increasingly used in the cardiovascular field to reproduce, study and improve devices and clinical treatments. The recent literature involves a number of patient-specific models replicating the transcatheter aortic valve implantation procedure, a minimally invasive treatment for high-risk patients with aortic diseases. The representation of the actual patient’s condition with truthful anatomy, materials and working conditions is the first step toward the simulation of the clinical procedure.The aim of this work is to quantify how the quality of routine clinical data, from which the patient-specific models are built, affects the outputs of the numerical models representing the pathological condition of stenotic aortic valve.Seven fluid–structure interaction (FSI) simulations were performed, completed with a sensitivity analysis on patient-specific reconstructed geometries and boundary conditions. The structural parts of the models consisted of the aortic root, native tri-leaflets valve and calcifications. Ventricular and aortic pressure curves were applied to the fluid domain.The differences between clinical data and numerical results for the aortic valve area were less than 2% but reached 12% when boundary conditions and geometries were changed. The difference in the aortic stenosis jet velocity between measured and simulated values was less than 11% reaching 27% when the geometry was changed. The CT slice thickness was found to be the most sensitive parameter on the presented FSI numerical model.In conclusion, the results showed that the segmentation and reconstruction phases need to be carefully performed to obtain a truthful patient-specific domain to be used in FSI analyses.  相似文献   

7.
PurposeTo develop an automatic multimodal method for segmentation of parotid glands (PGs) from pre-registered computed tomography (CT) and magnetic resonance (MR) images and compare its results to the results of an existing state-of-the-art algorithm that segments PGs from CT images only.MethodsMagnetic resonance images of head and neck were registered to the accompanying CT images using two different state-of-the-art registration procedures. The reference domains of registered image pairs were divided on the complementary PG regions and backgrounds according to the manual delineation of PGs on CT images, provided by a physician. Patches of intensity values from both image modalities, centered around randomly sampled voxels from the reference domain, served as positive or negative samples in the training of the convolutional neural network (CNN) classifier. The trained CNN accepted a previously unseen (registered) image pair and classified its voxels according to the resemblance of its patches to the patches used for training. The final segmentation was refined using a graph-cut algorithm, followed by the dilate-erode operations.ResultsUsing the same image dataset, segmentation of PGs was performed using the proposed multimodal algorithm and an existing monomodal algorithm, which segments PGs from CT images only. The mean value of the achieved Dice overlapping coefficient for the proposed algorithm was 78.8%, while the corresponding mean value for the monomodal algorithm was 76.5%.ConclusionsAutomatic PG segmentation on the planning CT image can be augmented with the MR image modality, leading to an improved RT planning of head and neck cancer.  相似文献   

8.
In the image segmentation process of positron emission tomography combined with computed tomography (PET/CT) imaging, previous works used information in CT only for segmenting the image without utilizing the information that can be provided by PET. This paper proposes to utilize the hot spot values in PET to guide the segmentation in CT, in automatic image segmentation using seeded region growing (SRG) technique. This automatic segmentation routine can be used as part of automatic diagnostic tools. In addition to the original initial seed selection using hot spot values in PET, this paper also introduces a new SRG growing criterion, the sliding windows. Fourteen images of patients having extrapulmonary tuberculosis have been examined using the above-mentioned method. To evaluate the performance of the modified SRG, three fidelity criteria are measured: percentage of under-segmentation area, percentage of over-segmentation area, and average time consumption. In terms of the under-segmentation percentage, SRG with average of the region growing criterion shows the least error percentage (51.85%). Meanwhile, SRG with local averaging and variance yielded the best results (2.67%) for the over-segmentation percentage. In terms of the time complexity, the modified SRG with local averaging and variance growing criterion shows the best performance with 5.273 s average execution time. The results indicate that the proposed methods yield fairly good performance in terms of the over- and under-segmentation area. The results also demonstrated that the hot spot values in PET can be used to guide the automatic segmentation in CT image.  相似文献   

9.
《IRBM》2019,40(5):253-262
The automated brain tumor segmentation methods are challenging due to the diverse nature of tumors. Recently, the graph based spectral clustering method is utilized for brain tumor segmentation to make high-quality segmentation output. In this paper, a new Walsh Hadamard Transform (WHT) texture for superpixel based spectral clustering is proposed for segmentation of a brain tumor from multimodal MRI images. First, the selected kernels of WHT are utilized for creating texture saliency maps and it becomes the input for the Simple Linear Iterative Clustering (SLIC) algorithm, to generate more precise texture based superpixels. Then the texture superpixels become nodes in the graph of spectral clustering for segmenting brain tumors of MRI images. Finally, the original members of superpixels are recovered to represent Complete Tumor (CT), Tumor Core (TC) and Enhancing Tumor (ET) tissues. The observational results are taken out on BRATS 2015 datasets and evaluated using the Dice Score (DS), Hausdorff Distance (HD) and Volumetric Difference (VD) metrics. The proposed method produces competitive results than other existing clustering methods.  相似文献   

10.
In this review we summarize original methods for the extraction quantitative information from the confocal images of gene expression patterns. These methods include image segmentation, extraction of quantitative numerical data on gene expression, removal of background signal and spatial registration. Finally it is possible to construct a spatiotemporal atlas of gene expression form individual images obtained at each developmental stage. Initially all methods were developed to extract quantitative numerical information form confocal images of segmentation gene expression in Drosophila melanogaster. Application of these methods to Drosophila images makes it possible to reveal new mechanisms of formation of segmentation gene expression domains, as well as to construct the quantitative atlas of segmentation gene expression. Most image processing procedures can be easily adapted to process a wide range of biological images.  相似文献   

11.
In this review, we summarize original methods for the extraction of quantitative information from confocal images of gene-expression patterns. These methods include image segmentation, the extraction of quantitative numerical data on gene expression, and the removal of background signal and spatial registration. Finally, it is possible to construct a spatiotemporal atlas of gene expression from individual images recorded at each developmental stage. Initially all methods were developed to extract quantitative numerical information from confocal images of segmentation gene expression in Drosophila melanogaster. The application of these methods to Drosophila images makes it possible to reveal new mechanisms in the formation of segmentation gene expression domains, as well as to construct a quantitative atlas of segmentation gene expression. Most image processing procedures can be easily adapted to process a wide range of biological images.  相似文献   

12.
Level set based methods are being increasingly used in image segmentation. In these methods, various shape constraints can be incorporated into the energy functionals to obtain the desired shapes of the contours represented by their zero level sets of functions. Motivated by the isoperimetric inequality in differential geometry, we propose a segmentation method in which the isoperimetric constrain is integrated into a level set framework to penalize the ratio of its squared perimeter to its enclosed area of an active contour. The new model can ensure the compactness of segmenting objects and complete missing or/and blurred parts of their boundaries simultaneously. The isoperimetric shape constraint is free of explicit expressions of shapes and scale-invariant. As a result, the proposed method can handle various objects with different scales and does not need to estimate parameters of shapes. Our method can segment lesions with blurred or/and partially missing boundaries in ultrasound, Computed Tomography (CT) and Magnetic Resonance (MR) images efficiently. Quantitative evaluation also confirms that the proposed method can provide more accurate segmentation than two well-known level set methods. Therefore, our proposed method shows potential of accurate segmentation of lesions for applying in diagnoses and surgical planning.  相似文献   

13.
Cervical cancer is one of the most common cancers to affect women worldwide. Despite the efficiency of radiotherapy treatment, some patients present post-treatment tumor recurrence, which increases the risk of death. Several studies suggest that tumor characteristics visible with PET imaging before and during the treatment could be used to predict post-treatment recurrence. We evaluate the contribution of pre- and per-treatment 18F-FDG PET images by exploring the predictive value of features extracted through several segmentation methods. Forty-one patients with locally advanced cervix cancer treated by chemoradiotherapy were considered. For each patient, two coregistered PET/CT scan were acquired before and during the treatment. A non-rigid registration was used to match the two PET acquisitions and evaluate the tumor metabolism inside the same area. Maximum and peak standardized uptake value (SUVmax and SUVpeak), the metabolic tumor volume (MTV) and the total lesion glycolysis (TLG) were evaluated. The predictive value of the extracted features was assessed through the Harrel's C-index. Results suggest that accurate segmentation can compute early meaningful features that are related with tumor recurrence. TLG seems to be strongly informative in prediction of tumor recurrence in cervical cancer.  相似文献   

14.
Deep learning algorithms have improved the speed and quality of segmentation for certain tasks in medical imaging. The aim of this work is to design and evaluate an algorithm capable of segmenting bones in dual-energy CT data sets. A convolutional neural network based on the 3D U-Net architecture was implemented and evaluated using high tube voltage images, mixed images and dual-energy images from 30 patients. The network performed well on all the data sets; the mean Dice coefficient for the test data was larger than 0.963. Of special interest is that it performed better on dual-energy CT volumes compared to mixed images that mimicked images taken at 120 kV. The corresponding increase in the Dice coefficient from 0.965 to 0.966 was small since the enhancements were mainly at the edges of the bones. The method can easily be extended to the segmentation of multi-energy CT data.  相似文献   

15.
In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.  相似文献   

16.
Transcatheter aortic valve replacement (TAVR) is a safe and effective treatment option for patients deemed at high and intermediate risk for surgical aortic valve replacement. Similar to surgical aortic valves (SAVs), transcatheter aortic valves (TAVs) undergo calcification and mechanical wear over time. However, to date, there have been limited publications on the long-term durability of TAV devices. To assess longevity and mechanical strength of TAVs in comparison to surgical bioprosthetic valves, three-dimensional deformation analysis and strain measurement of the leaflets become an inevitable part of the evaluation. The goal of this study was to measure and compare leaflet displacement and strain of two commonly used TAVs in a side-by-side comparison with a commonly used SAV using a high-resolution digital image correlation (DIC) system. 26-mm Edwards SAPIEN 3, 26-mm Medtronic CoreValve, and 25-mm Carpentier-Edwards PERIMOUNT Magna surgical bioprosthesis were examined in a custom-made valve testing apparatus. A time-varying, spatially uniform pressure was applied to the leaflets at different loading rates. GOM ARAMIS® software was used to map leaflet displacement and strain fields during loading and unloading. High displacement regions were found to be at the leaflet belly region of the three bioprosthetic valves. In addition, the frame of the surgical bioprosthesis was found to be remarkably flexible, in contrary to CoreValve and SAPIEN 3 in which the stent was nearly rigid under a similar loading condition. The experimental DIC measurements can be used to characterize the anisotropic materiel behavior of the bioprosthetic heart valve leaflets and validate heart valve computational simulations.  相似文献   

17.
Inglis LM  Gray AJ 《Biometrics》2001,57(1):232-239
Semiautomatic image analysis techniques are particularly useful in biological applications, which commonly generate very complex images, and offer considerable flexibility. However, systematic study of such methods is lacking; most research develops fully automatic algorithms. This paper describes a study to evaluate several different semiautomatic or computer-assisted approaches to contour segmentation within the context of segmenting degraded images of fungal hyphae. Four different types of contour segmentation method, with varying degrees and types of user input, are outlined and applied to hyphal images. The methods are evaluated both quantitatively and qualitatively by comparing results obtained by several test subjects segmenting simulated images qualitatively similar to the hyphal images of interest. An active contour model approach, using control points, emerges as the method to be preferred to three more traditional approaches. Feedback from the image provider indicates that any of the methods described have something useful to offer for segmentation of hyphae.  相似文献   

18.
In the last decade, high‐resolution computed tomography (CT) and microcomputed tomography (micro‐CT) have been increasingly used in anthropological studies and as a complement to traditional histological techniques. This is due in large part to the ability of CT techniques to nondestructively extract three‐dimensional representations of bone structures. Despite prior studies employing CT techniques, no completely reliable method of bone segmentation has been established. Accurate preprocessing of digital data is crucial for measurement accuracy, especially when subtle structures such as trabecular bone are investigated. The research presented here is a new, reproducible, accurate, and fully automated computerized segmentation method for high‐resolution CT datasets of fossil and recent cancellous bone: the Ray Casting Algorithm (RCA). We compare this technique with commonly used methods of image thresholding (i.e., the half‐maximum height protocol and the automatic, adaptive iterative thresholding procedure). While the quality of the input images is crucial for conventional image segmentation, the RCA method is robust regarding the signal to noise ratio, beam hardening, ring artifacts, and blurriness. Tests with data of extant and fossil material demonstrate the superior quality of RCA compared with conventional thresholding procedures, and emphasize the need for careful consideration of optimal CT scanning parameters. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
ObjectiveInvestigating the application of CT images when diagnosing lung cancer based on finite mixture model is the objective. Method: 120 clean healthy rats were taken as the research objects to establish lung cancer rat model and carry out lung CT image examination. After the successful CT image data preprocessing, the image is segmented by different methods, which include lung nodule segmentation on the basis of Adaptive Particle Swarm Optimization – Gaussian mixture model (APSO-GMM), lung nodule segmentation on the basis of Adaptive Particle Swarm Optimization – gamma mixture model (APSO-GaMM), lung nodule segmentation based on statistical information and self-selected mixed distribution model, and lung nodule segmentation based on neighborhood information and self-selected mixed distribution model. The segmentation effect is evaluated. Results: Compared with the results of lung nodule segmentation based on statistical information and self-selected mixed distribution model, the Dice coefficient of lung nodule segmentation based on neighborhood information and self-selected mixed distribution model is higher, the relative final measurement accuracy is smaller, the segmentation is more accurate, but the running time is longer. Compared with APSO-GMM and APSO-GaMM, the dice value of self-selected mixed distribution model segmentation method is larger, and the final measurement accuracy is smaller. Conclusion: Among the five methods, the dice value of the self-selected mixed distribution model based on neighborhood information is the largest, and the relative accuracy of the final measurement is the smallest, indicating that the segmentation effect of the self-selected mixed distribution model based on neighborhood information is the best.  相似文献   

20.
Image segmentation is a critical step in digital picture analysis, especially for that of tissue sections. As the morphology of the cell nuclei provides important biological information, their segmentation is of particular interest. The known segmentation methods are not adequate for segmenting cell nuclei of tissue sections; the reason for this lies in the optical properties of their images. We have developed new gradient methods of segmentation of previously presegmented images by taking these properties into account and by using the approximately circular shape of the cell nuclei as a priori information. In our first technique, the segment method, the images of the nuclei are divided into eight segments, special gradient filters being defined for each segment. This has enabled us to improve the gradient image. After searching for local maxima, the contours of nuclei can be found. In the second method, the method of transformation into the polar coordinate system (PCS), the a priori information serves to define a circular direction field for gradient computation and contour finding. In contrast with the first method, which offers a rapid, general idea about the nuclear shape, the PCS method permits precise segmentation and morphological analysis of the cell nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号