首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamine's role as an energetic fuel has been extensively studied in the past using 14C- and 3H-labeled tracers in cultured human cells. Yet another prominent role of glutamine, that of a nitrogen shuttle, cannot be approached without an N-tracer. We therefore used 15N-labeled glutamine and glutamate to address the following questions: (1) is it possible to study the exchangeable pools of intracellular free glutamine and glutamate nitrogen with stable isotope methods? and (2) to what extent is intracellular glutamine pool regulated by extracellular glutamine? We observed that: (1) intracellular [15N]-glutamine enrichment reached a plateau at 80% within 20 min of incubation in a buffer containing 0.7 mM pure 15N-glutamine and no glutamate; in contrast, intracellular 15N-glutamate enrichment rose only to 40% after 4 hours of incubation in a buffer containing 0.5 mM pure 15N-glutamate and no glutamine; (2) the cell-free glutamine content was tightly dependent on extracellular glutamine level, while the cell-free glutamate remained steady irrespective of the extracellular glutamate level; (3) the cells took up glutamine and glutamate against a concentration gradient; the rate of glutamine uptake accounted for 90% of the cell glutamine turnover rate; and (4) when cells were confronted with a glutamine-free medium, only one fourth of intracellular glutamine was derived from the exchangeable glutamate. We conclude that: (1) The size and turnover rate of the intracellular pool of free glutamine nitrogen are measurable using stable isotope methodology; (2) glutamine uptake from the extracellular medium accounts for most of glutamine turnover rate in cultured fibroblasts; and (3) intracellular free glutamate is divided up between several pools in cultured human fibroblasts.  相似文献   

2.
The relationship between acidosis and the metabolism of glutamine and glutamate was studied in cultured astrocytes. Acidification of the incubation medium was associated with an increased formation of aspartate from glutamate and glutamine. The rise of the intracellular content of aspartate was accompanied by a significant decline in the extracellular concentration of both lactate and citrate. Studies with either [2-(15)N]glutamine or [15N]glutamate indicated that there occurred in acidosis an increased transamination of glutamate to aspartate. Studies with L-[2,3,3,4,4-(2)H5]glutamine indicated that in acidosis glutamate carbon was more rapidly converted to aspartate via the tricarboxylic acid cycle. Acidosis appears to result in increased availability of oxaloacetate to the aspartate aminotransferase reaction and, consequently, increased transamination of glutamate. The expansion of the available pool of oxaloacetate probably reflects a combination of: (a) Restricted flux through glycolysis and less production from pyruvate of acetyl-CoA, which condenses with oxaloacetate in the citrate synthetase reaction; and (b) Increased oxidation of glutamate and glutamine through a portion of the tricarboxylic acid cycle and enhanced production of oxaloacetate from glutamate and glutamine carbon. The data point to the interplay of the metabolism of glucose and that of glutamate in these cells.  相似文献   

3.
The source of nitrogen (N) for the de novo synthesis of brain glutamate, glutamine and GABA remains controversial. Because leucine is readily transported into the brain and the brain contains high activities of branched-chain aminotransferase (BCAT), we hypothesized that leucine is the predominant N-precursor for brain glutamate synthesis. Conscious and unstressed rats administered with [U-13C] and/or [15N]leucine as additions to the diet were killed at 0-9 h of continuous feeding. Plasma and brain leucine equilibrated rapidly and the brain leucine-N turnover was more than 100%/min. The isotopic dilution of [U-13C]leucine (brain/plasma ratio 0.61 +/- 0.06) and [15N]leucine (0.23 +/- 0.06) differed markedly, suggesting that 15% of cerebral leucine-N turnover derived from proteolysis and 62% from leucine synthesis via reverse transamination. The rate of glutamate synthesis from leucine was 5 micro mol/g/h and at least 50% of glutamate-N originally derived from leucine. The enrichment of [5-15N]glutamine was higher than [15N]ammonia in the brain, indicating glial ammonia generation from leucine via glutamate. The enrichment of [15N]GABA, [15N]aspartate, [15N]glutamate greater than [2-15N]glutamine suggests direct incorporation of leucine-N into both glial and neuronal glutamate. These findings provide a new insight for the role of leucine as N-carrier from the plasma pool and within the cerebral compartments.  相似文献   

4.
Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.  相似文献   

5.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

6.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

7.
The role of the glutamate dehydrogenase reaction as a pathway of glutamate synthesis was studied by incubating synaptosomes with 5 mM 15NH4Cl and then utilizing gas chromatography-mass spectrometry to measure isotopic enrichment in glutamate and aspartate. The rate of formation of [15N]glutamate and [15N]aspartate from 5 mM 15NH4Cl was approximately 0.2 nmol/min/mg of protein, a value much less than flux through glutaminase (4.8 nmol/min/mg of protein) but greater than flux through glutamine synthetase (0.045 nmol/min/mg of protein). Addition of 1 mM 2-oxoglutarate to the medium did not affect the rate of [15N]glutamate formation. O2 consumption and lactate formation were increased in the presence of 5 mM NH3, whereas the intrasynaptosomal concentrations of glutamate and aspartate were unaffected. Treatment of synaptosomes with veratridine stimulated reductive amination of 2-oxoglutarate during the early time points. The production of ([15N]glutamate + [15N]aspartate) was enhanced about twofold in the presence of 5 mM beta-(+/-)-2-aminobicyclo [2.2.1]heptane-2-carboxylic acid, a known effector of glutamate dehydrogenase. Supplementation of the incubation medium with a mixture of unlabelled amino acids at concentrations similar to those present in the extracellular fluid of the brain had little effect on the intrasynaptosomal [glutamate] and [aspartate]. However, the enrichment in these amino acids was consistently greater in the presence of supplementary amino acids, which appeared to stimulate modestly the reductive amination of 2-oxoglutarate. It is concluded: (a) compared with the phosphate-dependent glutaminase reaction, reductive amination is a relatively minor pathway of synaptosomal glutamate synthesis in both the basal state and during depolarization; (b) NH3 toxicity, at least in synaptosomes, is not referable to energy failure caused by a depletion of 2-oxoglutarate in the glutamate dehydrogenase reaction; and (c) transamination is not a major mechanism of glutamate nitrogen production in nerve endings.  相似文献   

8.
Gas chromatography-mass spectrometry was utilized to study the metabolism of [15N]glutamate, [2-15N]glutamine, and [5-15N]glutamine in isolated renal tubules prepared from control and chronically acidotic rats. The main purpose was to determine the nitrogen sources utilized by the kidney in various acid-base states for ammoniagenesis. Incubations were performed in the presence of 2.5 mM 15N-labeled glutamine or glutamate. Experiments with [5-15N]glutamine showed that in control animals approximately 90% of ammonia nitrogen was derived from 5-N of glutamine versus 60% in renal tubules from acidotic rats. Experiments with [2-15N]glutamine or [15N]glutamate indicated that in chronic acidosis approximately 30% of ammonia nitrogen was derived either from 2-N of glutamine or glutamate-N by the activity of glutamate dehydrogenase. Flux through glutamate dehydrogenase was 6-fold higher in chronic acidosis versus control. No 15NH3 could be detected in renal tubules from control rats when [2-15N]glutamine was the substrate. The rates of 15N transfer to other amino acids and to the 6-amino groups of the adenine nucleotides were significantly higher in normal renal tubules versus those from chronically acidotic rats. In tubules from chronically acidotic rats, 15N abundance in 15NH3 and the rate of 15NH3 appearance were significantly higher than that of either the 6-amino group of adenine nucleotides or the 15N-amino acids studied. The data indicate that glutamate dehydrogenase activity rather than glutamate transamination is primarily responsible for augmented ammoniagenesis in chronic acidosis. The contribution of the purine nucleotide cycle to ammonia formation appears to be unimportant in renal tubules from chronically acidotic rats.  相似文献   

9.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   

10.
The glutamine metabolism was studied in glucose-starved and glucose-sufficient hybridoma and Sp2/0-Ag14 myeloma cells. Glucose starvation was attained by cultivating the hybridoma cells with fructose instead of glucose, and the myeloma cells with a low initial glucose concentration which was rapidly exhausted. Glutamine used in the experiments was labeled with 15N, either in the amine or in the amide position. The fate of the label was monitored by 1H/15N NMR analysis of released 15NH+4 and 15N-alanine. Thus, NH+4 formed via glutaminase (GLNase) could be distinguished from NH+4 formed via glutamate dehydrogenase (GDH). In the glucose-sufficient cells a small but measurable amount of 15NH+4 released by GDH could be detected in both cell lines (0.75 and 0.31 micromole/10(6) cells for hybridoma and myeloma cells, respectively). The uptake of glutamine and the total production of NH+4 was significantly increased in both fructose-grown hybridoma and glucose-starved myeloma cells, as compared to the glucose-sufficient cells. The increased NH+4 production was due to an increased throughput via GLNase (1.6 -1.9-fold in the hybridoma, and 2.7-fold in the myeloma cell line) and an even further increased metabolism via GDH (4.8-7.9-fold in the hybridoma cells, and 3.1-fold in the myeloma cells). The data indicate that both GLNase and GDH are down-regulated when glucose is in excess, but up-regulated in glucose-starved cells. It was calculated that the maximum potential ATP production from glutamine could increase by 35-40 % in the fructose-grown hybridoma cells, mainly due to the increased metabolism via GDH.  相似文献   

11.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

12.
Glucose and Synaptosomal Glutamate Metabolism: Studies with [15N]Glutamate   总被引:1,自引:0,他引:1  
The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.  相似文献   

13.
Glutamate metabolism in rat cortical astrocyte cultures was studied to evaluate the relative rates of flux of glutamate carbon through oxidative pathways and through glutamine synthetase (GS). Rates of 14CO2 production from [1-14C]glutamate were determined, as was the metabolic fate of [14C(U)]glutamate in the presence and absence of the transaminase inhibitor aminooxyacetic acid and of methionine sulfoximine, an irreversible inhibitor of GS. The effects of subculturing and dibutyryl cyclic AMP treatment of astrocytes on these parameters were also examined. The vast majority of exogenously added glutamate was converted to glutamine and exported into the extracellular medium. Inhibition of GS led to a sustained and greatly elevated intracellular glutamate level, thereby demonstrating the predominance of this pathway in the astrocytic metabolism of glutamate. Nevertheless, there was some glutamate oxidation in the astrocyte culture, as evidenced by aspartate production and labeling of intracellular aspartate pools. Inhibition of aspartate aminotransferase caused a greater than 70% decrease in 14CO2 production from [1-14C]glutamate. Inhibition of GS caused an increase in aspartate production. It is concluded that transamination of glutamate rather than oxidative deamination catalyzed by glutamate dehydrogenase is the first step in the entry of glutamate carbon into the citric acid cycle in cultured astrocytes. This scheme of glutamate metabolism was not qualitatively altered by subculturing or by treatment of the cultures with dibutyryl cyclic AMP.  相似文献   

14.
13C-n.m.r. spectroscopy and g.c.-m.s. were used to determine the metabolic fate of glutamate carbon in rat kidney. The main purpose was to characterize the effect of chronic metabolic acidosis on the utilization of glutamate carbon. Renal tubules obtained from normal and chronically acidotic rats were incubated in Krebs buffer, pH 7.4, in the presence of 2.5 mM-[3-13C]glutamate. During the course of incubation the concentrations of total glucose and NH3 were significantly (P less than 0.05) higher in tissue from acidotic rats. The levels of some tricarboxylic-acid-cycle intermediates were higher (P less than 0.05) in control tissue. In control tissue, 13C-n.m.r. spectra demonstrated a significantly higher rate of 13C appearance of aspartate, glutamine and [2,4-13C]glutamate. However, in acidosis the resonances of [13C]glucose carbon atoms were significantly higher. In the control, approx. 15% of glutamate carbon was accounted for by [13C]glucose formation as against 30% in chronic acidosis. However, in control tissue, 44% of glutamate carbon utilization was accounted for by recycling to glutamate and formation of aspartate, glutamine and GABA. In acidosis, only 11% was so recovered. Analysis of 15NH3 formation during the course of incubation with 2.5 mM-[15N]glutamate demonstrated a positive association between the appearance of [13C]glucose and 15NH3 both in the control and in acidosis. The data suggest that the control of gluconeogenesis and ammoniagenesis in acidosis is, in part, referable to a diminution in the rate of the reductive amination of alpha-oxoglutarate, that of the transamination reaction and that of glutamine synthesis.  相似文献   

15.
This short review surveys the effects of extracellular potassium, released by neuronal activity, on the fluxes of ammonium, glutamate and glutamine in astrocytes. There is evidence that each of these fluxes is modulated by potassium-induced changes in astrocytic pH. The result is viewed as an integrated response to neuronal activity. The unusually high permeability of astrocyte cell membrane to ammonium ions, together with the normal transmembrane gradient of pH, enables astrocytes to accumulate ammonium appreciably. However, at loci of neuronal activity, effective ammonium ion permeability is diminished and the cytosol is alkalinized, resulting in a local decline in intracellular ammonium concentration. Intracellular potassium concentration rises at these same loci, creating the conditions for a 'potassium-ammonium countercurrent' in which ammonium ions migrate intracellularly towards sites of neuronal activity as potassium ions diffuse away.Physiologic elevations of extracellular potassium evoke a marked 'paradoxical' increase in the velocity of glutamate uptake in astrocytes. This increase correlates well with the extent of potassium-induced alkalinization. Further, recent evidence identifies a major transporter of glutamine in astrocytes (System N) as a glutamine/proton exchanger. Potassium can reverse the transmembrane gradient of protons in astrocytes, and increase intracellular glutamine concentration, creating the conditions for a reversal of glutamine flux via System N from uptake to export. These flux changes, evoked by potassium released from active neurons, combine to accelerate glutamate-glutamine cycling.  相似文献   

16.
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo.  相似文献   

17.
Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.  相似文献   

18.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

19.
Glutamine-free culture of Vero cells has previously been shown to cause higher cell yield and lower ammonia accumulation than that in glutamine-containing culture. Nitrogen metabolism of asparagine and glutamate as glutamine replacer was studied here using nuclear magnetic resonance (NMR) spectroscopy. 15N-labelled glutamate or asparagine was added and their incorporation into nitrogenous metabolites was monitored by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. In cells incubated with l-[15N]glutamate, the 15N label was subsequently found in a number of metabolites including alanine, aspartate, proline, and an unidentified compound. No detectable signal occurred, indicating that glutamate was utilized by transamination rather than by oxidative deamination. In cells incubated with l-[2-15N]asparagine, the 15N label was subsequently found in aspartate, the amine group of glutamate/glutamine, and in two unidentified compounds. Incubation of cells with l-[4-15N]asparagine showed that the amide nitrogen of asparagine was predominantly transferred to glutamine amide. There was no detectable production of , showing that most of the asparagine amide was transaminated by asparagine synthetase rather than deaminated by asparaginase. Comparing with a glutamine-containing culture, the activities of phosphate-activated glutaminase (PAG), glutamate dehydrogenase (GDH) and alanine aminotransferase (ALT) decreased significantly and the activity of aspartate aminotransferase (AST) decreased slightly.  相似文献   

20.
Abstract: We have evaluated the effect of α-ketoisocaproic acid (KIC), the ketoacid of leucine, on the production of glutamine by cultured astrocytes. We used 15NH4Cl as a metabolic tracer to measure the production of both [5-15N]glutamine, reflecting amidation of glutamate via glutamine synthetase, and [2-15N]glutamine, representing the reductive amination of 2-oxoglutarate via glutamate dehydrogenase and subsequent conversion of [15N]-glutamate to [2-15N]glutamine. Addition of KIC (1 mM) to the medium diminished the production of [5-15N]glutamine and stimulated the formation of [2-15N]glutamine with the overall result being a significant inhibition of net glutamine synthesis. An external KIC concentration as low as 0.06 mM inhibited synthesis of [5-15N]glutamine and a level as low as 0.13 mM enhanced labeling (atom% excess) of [2-15N]glutamine. Higher concentrations of KIC in the medium had correspondingly larger effects. The presence of KIC in the medium did not affect flux through glutaminase, which was measured using [2-15N]glutamine as a tracer. Nor did KIC inhibit the activity of glutamine synthetase that was purified from sheep brain. Addition of KIC to the medium caused no increased release of lactate dehydrogenase from the astrocytes, suggesting that the ketoacid was not toxic to the cells. KIC treatment was associated with an approximately twofold increase in the formation of 14CO2 from [U-14C]glutamate, indicating that transamination of glutamate with KIC increases intraastrocytic α-ketoglutarate, which is oxidized in the tricarboxylic acid cycle. KIC inhibited glutamine synthesis more than any other ketoacid tested, with the exception of hydroxypyruvate. The data indicate that KIC diminishes flux through glutamine synthetase by lowering the intraastrocytic glutamate concentration below the Km of glutamine synthetase for glutamate, which we determined to be ~7 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号