首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
A flexible, transparent, and renewable mesoporous cellulose membrane (mCel‐membrane) featuring uniform mesopores of ≈24.7 nm and high porosity of 71.78% is prepared via a facile and scalable solution‐phase inversion process. KOH‐saturated mCel‐membrane as a polymer electrolyte demonstrates a high electrolyte retention of 451.2 wt%, a high ionic conductivity of 0.325 S cm?1, and excellent mechanical flexibility and robustness. A solid‐state electric double layer capacitor (EDLC) using activated carbon as electrodes, the KOH‐saturated mCel‐membrane as a polymer electrolyte exhibits a high capacitance of 110 F g?1 at 1.0 A g?1, and long cycling life of 10 000 cycles with 84.7% capacitance retention. Moreover, a highly integrated planar‐type micro‐supercapacitor (MSC) can be facilely fabricated by directly depositing the electrode materials on the mCel‐membrane‐based polymer electrolyte without using complicated devices. The resulting MSC exhibits a high areal capacitance of 153.34 mF cm?2 and volumetric capacitance of 191.66 F cm?3 at 10 mV s?1, representing one of the highest values among all carbon‐based MSC devices. These findings suggest that the developed renewable, flexible, mesoporous cellulose membrane holds great promise in the practical applications of flexible, solid‐state, portable energy storage devices that are not limited to supercapacitors.  相似文献   

2.
The emerging fiber‐shaped supercapacitors (FSSs) have motivated tremendous research interest in energy storage devices. However, challenges still exist in the pursuit of combination of excellent electrochemical performance and mechanical stretchability. Here, a core‐sheath asymmetric FSS is first made by wrapping gel electrolyte coated carbon nanotube (CNT)@MnO2 core fiber with CNT@PPy composite film. Then a stretchable helical structure is formed by over‐twisting the FSS. The resulted stretchable asymmetric FSS exhibits a specific capacitance of 60.435 mF cm?2 at the scan rate of 10 mV s?1 and the capacitance performance is well maintained during repeated stretching to 20% strain. Furthermore, a high energy density of 18.88 μW h cm?2 is achieved for the stretchable FSS due to its high specific capacitance and extended potential window of 1.5 V.  相似文献   

3.
A three‐component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ‐MnO2 nanoflowers anchored onto carbon nanotubes (γ‐MnO2/CNT) as spacers for graphene nanosheets (GNs). The three‐component, composite electrode doubles the specific capacitance with respect to GN‐only electrodes, giving the highest‐reported specific capacitance (308 F g?1) for symmetric supercapacitors containing MnO2 and GNs using a two‐electrode configuration, at a scan rate of 20 mV s?1. A maximum energy density of 43 W h kg?1 is obtained for our symmetric supercapacitors at a constant discharge‐current density of 2.5 A g?1 using GN–(γ‐MnO2/CNT)‐nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles.  相似文献   

4.
The demands for wearable technologies continue to grow and novel approaches for powering these devices are being enabled by the advent of new electromaterials and novel fabrication strategies. Herein, a novel approach is reported to develop superelastic wet‐spun hybrid carbon nanotube graphene fibers followed by electrodeposition of polyaniline to achieve a high‐performance fiber‐based supercapacitor. It is found that the specific capacitance of hybrid carbon nanotube (CNT)/graphene fiber is enhanced up to ≈39% using a graphene to CNT fiber ratio of 1:3. Fabrication of spring‐like coiled fiber coated with an elastic polymer shows an extraordinary elasticity capable of 800% strain while affording a specific capacitance of ≈138 F g?1. The elastic rubber coating enables extreme stretchability and enabling cycles with up to 500% strain for thousands of cycles with no significant change in its performance. Multiple supercapacitors can be easily assembled in series or parallel to meet specific energy and power needs.  相似文献   

5.
Polyaniline (PANI), a promising conducting polymer for supercapacitor, exhibits high specific capacitance and good rate capability. However, it suffers from low cycling stability due to the breakage or scission of polymer chains and loss of contact caused by the volume change during the charge–discharge, as well as the irreversible oxidation and reduction. Here, a strategy for using aniline tetramers loaded on graphene oxide (AT‐GO) is developed to prevent chain breaking and increase the tolerance of volume change. The potential window is also controlled to reduce the irreversible reactions. In a three electrode test, AT‐GO exhibits a good cycling stability with specific capacitance remaining more than 93 to 96% after 2000 cycles. In a two electrode test, the specific capacitance remains 97.7% of its initial specific capacitance after 2000 cycles by suppressing the side reactions. AT‐GO also shows a high specific capacitance of more than 769 F g?1 at 1 A g?1 and it remains 581 F g?1 at 60 A g?1, suggesting a good rate capability. These results suggest that AT‐GO is a promising electrode material for practical applications.  相似文献   

6.
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10?4 S cm?1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.  相似文献   

7.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

8.
A composite membrane based on electrospun poly(vinylidene fluoride) (PVDF) and lithium polyvinyl alcohol oxalate borate (LiPVAOB) exhibiting high safety (self‐extinguishing) and good mechanical property is prepared. The ionic conductivity of the as‐prepared gel polymer electrolyte from this composite membrane saturated with 1 mol L?1 LiPF6 electrolyte at ambient temperature can be up to 0.26 mS cm?1, higher than that of the corresponding well‐used commercial separator (Celgard 2730), 0.21 mS cm?1. Moreover, the lithium ion transference in the gel polymer electrolyte at room temperature is 0.58, twice as that in the commercial separator (0.27). Furthermore, the absorbed electrolyte solvent is difficult to evaporate at elevated temperature. Its electrochemical performance is evaluated by using LiFePO4 cathode. The obtained results suggest that this gel‐type composite membrane shows great possibilities for use in large‐capacity lithium ion batteries that require high safety.  相似文献   

9.
Stretchable supercapacitors have received increasing attention due to their broad applications in developing self‐powered stretchable electronics for wearable electronics, epidermal and implantable electronics, and biomedical devices that are capable of sustaining large deformations and conforming to complicated surfaces. In this work, a new type of highly stretchable and reliable supercapacitor is developed based on crumpled vertically aligned carbon nanotube (CNT) forests transferred onto an elastomer substrate with the assistance of a thermal annealing process in atmosphere environment. The crumpled CNT‐forest electrodes demonstrated good electrochemical performance and stability under either uniaxial (300%) or biaxial strains (300% × 300%) for thousands of stretching–relaxing cycles. The resulting supercapacitors can sustain a stretchability of 800% and possess a specific capacitance of 5 mF cm?2 at the scan rate of 50 mV s?1. Furthermore, the crumpled CNT‐forest electrodes can be easily decorated with impregnated metal oxide nanoparticles to improve the specific capacitance and energy density of the supercapacitors. The approach developed in this work offers an alternative strategy for developing novel stretchable energy devices with vertically aligned nanotubes or nanowires for advanced applications in stretchable, flexible, and wearable electronic systems.  相似文献   

10.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

11.
The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer‐thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g?1 (based on PANI mass) and a large area‐normalized specific capacitance of ≈2.6 F cm?2 (equivalent to a volumetric capacitance of ≈230 F cm?3) at a low current density of 1 A g?1 (based on PANI mass). The specific capacitances remain above 1200 F g?1 (based on PANI mass) for currents up to 100 A g?1 with correspondingly high area‐normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg?1 and a maximum power density of 265 kW kg?1 at a current density of 100 A g?1. Long‐term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all‐solid‐state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.  相似文献   

12.
All solid‐state sodium batteries (ASSBs) have attracted considerable attention due to their enhanced safety, long lifespan, and high energy density. However, several challenges have plagued the development of ASSBs, especially the relatively low ionic conductivity of solid‐state electrolytes (SSEs), large interfacial resistance, and low stability/compatibility between SSEs and electrodes. Here, a high‐performance all solid‐state sodium battery (NVP@C|PEGDMA‐NaFSI‐SPE|Na) is designed by employing carbon coated Na3V2(PO4)3 composite nanosheets (NVP@C) as the cathode, solvent‐free solid polymer electrolyte (PEGDMA‐NaFSI‐SPE) as the electrolyte and metallic sodium as the anode. The integrated electrolyte and cathode system prepared by the in situ polymerization process exhibits high ionic conductivity (≈10?4 S cm?1 at room temperature) and an outstanding electrolyte/electrode interface. Benefiting from these merits, the soft‐pack ASSB (NVP@C|PEGDMA‐NaFSI‐SPE|Na) delivers excellent cycling life over 740 cycles (capacity decay of only 0.007% per cycle) and maintains 95% of the initial reversible capacity with almost no self‐discharge even after resting for 3 months. Moreover, the bendable ASSB exhibits a high capacity of 106 mAh g?1 (corresponds to energy density of ≈355 Wh kg?1) at 0.5 C despite undergoing repeated bending for 535 cycles. This work offers a new strategy to fabricate high‐performance flexible ASSBs with a long lifespan and excellent flexibility.  相似文献   

13.
Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium‐carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium‐carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m2g?1), large pore volumes (1.24 cm3g?1), narrow mesopore‐size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg?1 in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore‐walls can increase the specific surface area to provide more sites for charge storage.  相似文献   

14.
Though polypyrrole (PPy) is widely used in flexible supercapacitors owing to its high electrochemical activity and intrinsic flexibility, limited capacitance and cycling stability of freestanding PPy films greatly reduce their practicality in real‐world applications. Herein, we report a new approach to enhance PPy's capacitance and cycling stability by forming a freestanding and conductive hybrid film through intercalating PPy into layered Ti3C2 (l‐Ti3C2, a MXene material). The capacitance increases from 150 (300) to 203 mF cm?2 (406 F cm?3). Moreover, almost 100% capacitance retention is achieved, even after 20 000 charging/discharging cycles. The analyses reveal that l‐Ti3C2 effectively prevents dense PPy stacking, benefiting the electrolyte infiltration. Furthermore, strong bonds, formed between the PPy backbones and surfaces of l‐Ti3C2, not only ensure good conductivity and provide precise pathways for charge‐carrier transport but also improve the structural stability of PPy backbones. The freestanding PPy/l‐Ti3C2 film is further used to fabricate an ultra‐thin all‐solid‐state supercapacitor, which shows an excellent capacitance (35 mF cm?2), stable performance at any bending state and during 10 000 charging/discharging cycles. This novel strategy provides a new way to design conductive polymer‐based freestanding flexible electrodes with greatly improved electrochemical performances.  相似文献   

15.
Lithium‐ion batteries (LIBs) are integral parts of modern technology, but can raise safety concerns because of their flammable organic electrolytes with low flash points. Aqueous electrolytes can be used in LIBs to overcome the safety issues that come with organic electrolytes while avoiding poor kinetics associated with solid state electrolytes. Despite advances in aqueous electrolytes, current collectors for aqueous battery systems have been neglected. Current collectors used in today's aqueous battery systems are usually metal‐based materials, which are heavy, expensive, bulky, and prone to corrosion after prolonged use. Here, a carbon nanotube (CNT)–cellulose nanofiber (CNF) all‐fiber composite is developed that takes advantage of the high conductivity of CNT while achieving high mechanical strength through the interaction between CNT and CNF. By optimizing the CNT/CNF weight ratio, this all‐fiber current collector can be made very thin while maintaining high conductivity (≈700 S cm?1) and strength (>60 MPa), making it an ideal replacement for heavy metal current collectors in aqueous battery systems.  相似文献   

16.
The pursuit of new categories of active materials as electrodes of supercapacitors remains a great challenge. Herein, for the first time, elemental boron as a superior electrode material of supercapacitors is reported, which exhibits significantly high capacitances and excellent rate performance in all alkaline, neutral, and acidic electrolytes. Notably, boron nanowire‐carbon fiber cloth (BNWs‐CFC) electrodes achieve a capacitance up to 42.8 mF cm?2 at a scan rate of 5 mV s?1 and 60.2 mF cm?2 at a current density of 0.2 mA cm?2 in the acidic electrolyte. Moreover, in all these three kinds of electrolytes, BNWs‐CFC electrodes demonstrate a decent cycling stability with >80% capacitance retention after 8000 charging/discharging cycles. The Dominating energy storage mechanism of BNWs in the different electrolytes is analyzed by looking into the kinetics of the electrochemical process. Subsequently, the BNWs‐CFC electrode is used to fabricate a flexible solid‐state supercapacitor, which reveals a specific capacitance up to 22.73 mF cm?2 and good mechanical performance after 1000 bending cycles. This study opens a new avenue to explore elemental boron‐based new nanomaterials for the application of energy storage with superior electrochemical performance.  相似文献   

17.
All‐solid‐state on‐chip SiC supercapacitors (SCs) based on free‐standing SiC nanowire arrays (NWAs) are reported. In comparison to the widely used technique based on the interdigitated fingers, the present strategy can be much more facile for constructing on‐chip SCs devices, which is directly sandwiched with a solid electrolyte layer between two pieces of SiC NWAs film without any substrate. The mass loading of active materials of on‐chip SiC SCs can be up to ≈5.6 mg cm?2, and the total device thickness is limited in ≈40 µm. The specific area energy and power densities of the SCs device reach 5.24 µWh cm?2 and 11.2 mW cm?2, and their specific volume energy and power densities run up to 1.31 mWh cm–3 and 2.8 W cm?3, respectively, which are two orders of magnitude higher than those of state‐of‐the‐art SiC‐based SCs, and also much higher than those of other solid‐state carbon‐based SCs ever reported. Furthermore, such on‐chip SCs exhibit superior rate capability and robust stability with over 94% capacitance retention after 10 000 cycles at a scan rate of 100 mV s?1, representing their high performance in all merits.  相似文献   

18.
Supercapacitors based on freestanding and flexible electrodes that can be fabricated with bacterial cellulose (BC), multiwalled carbon nanotubes (MWCNTs), and polyaniline (PANI) are reported. Due to the porous structure and electrolyte absorption properties of the BC paper, the flexible BC‐MWCNTs‐PANI hybrid electrode exhibits appreciable specific capacitance (656 F g?1 at a discharge current density of 1 A g?1) and remarkable cycling stability with capacitance degradation less than 0.5% after 1000 charge–discharge cycles at a current density of 10 A g?1. The facile and low‐cost of this binder‐free paper electrode may have great potential in development of flexible energy‐storage devices.  相似文献   

19.
Secondary batteries based on earth‐abundant potassium metal anodes are attractive for stationary energy storage. However, suppressing the formation of potassium metal dendrites during cycling is pivotal in the development of future potassium metal‐based battery technology. Herein, a promising artificial solid‐electrolyte interphase (ASEI) design, simply covering a carbon nanotube (CNT) film on the surface of a potassium metal anode, is demonstrated. The results show that the spontaneously potassiated CNT framework with a stable self‐formed solid‐electrolyte interphase layer integrates a quasi‐hosting feature with fast interfacial ion transport, which enables dendrite‐free deposition of potassium at an ultrahigh capacity (20 mAh cm?2). Remarkably, the potassium metal anode exhibits an unprecedented cycle life (over 1000 cycles, over 2000 h) at a high current density of 5 mA cm?2 and a desirable areal capacity of 4 mAh cm?2. Dendrite‐free morphology in carbon‐fiber and carbon‐black‐based ASEI for potassium metal anodes, which indicates a broader promise of this approach, is also observed.  相似文献   

20.
Nano‐fibrous felts (nano‐felts) of carbide‐derived carbon (CDC) have been developed from the precursor of electrospun titanium carbide (TiC) nano‐felts. Conformal transformation of TiC into CDC conserves main features of the precursor including the high interconnectivity and structural integrity; the developed TiC‐CDC nano‐felts are mechanically flexible/resilient, and can be used as electrode material for supercapacitor application without the addition of any binder. After synthesis through chlorination of the precursor at 600 °C, the TiC‐CDC nano‐fibers show an average pore size of ~1nm, a high specific surface area of 1390 m2/g; and the nano‐fibers have graphitic carbon ribbons embedded in a highly disordered carbon matrix. Graphitic carbon is preserved from the precursor nano‐fibers where a few graphene layers surround TiC nanocrystallites. Electrochemical measurements show a high gravimetric capacitance of 110 F/g in aqueous electrolyte (1 M H2SO4) and 65 F/g in organic electrolyte (1.5 M TEA‐BF4 in acetonitrile). Because of the unique microstructure of TiC‐CDC nano‐felts, a fade of the capacitance of merely 50% at a high scan rate of 5 V/s is observed. A fade of just 15% is observed for nano‐felt film electrodes tested in 1 M H2 SO4 at 1 V/s, resulting in a high gravimetric capacitance of 94 F/g. Such a high rate performance is only known for graphene or carbon‐onion based supercapacitors, whereas binders have to be used for the fabrication of those supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号