首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
Traditionally studies of brain function have focused on task-evoked responses. By their very nature such experiments tacitly encourage a reflexive view of brain function. While such an approach has been remarkably productive at all levels of neuroscience, it ignores the alternative possibility that brain functions are mainly intrinsic and ongoing, involving information processing for interpreting, responding to and predicting environmental demands. I suggest that the latter view best captures the essence of brain function, a position that accords well with the allocation of the brain''s energy resources, its limited access to sensory information and a dynamic, intrinsic functional organization. The nature of this intrinsic activity, which exhibits a surprising level of organization with dimensions of both space and time, is revealed in the ongoing activity of the brain and its metabolism. As we look to the future, understanding the nature of this intrinsic activity will require integrating knowledge from cognitive and systems neuroscience with cellular and molecular neuroscience where ion channels, receptors, components of signal transduction and metabolic pathways are all in a constant state of flux. The reward for doing so will be a much better understanding of human behaviour in health and disease.  相似文献   

5.
6.
7.
不宁腿综合征遗传学研究进展   总被引:2,自引:0,他引:2  
范安  饶绍奇 《遗传》2009,31(7):675-682
不宁腿综合征(Restless legs syndrome, RLS)遗传学研究近年来获得了许多重要的进展, 极大地丰富了对于这种疾病分子机制的认识。RLS是一种常见的复杂疾病, 几个遗传流行病学和双生子研究对RLS遗传组分进行了剖析, 说明RLS是一个遗传性很强的性状, 其遗传力约为50%。采用基于模型的连锁分析方法或者是不依赖于模型的连锁分析方法目前已定位了5个重要的RLS疾病连锁位点: 12q13-23, 14q13-21, 9p24-22, 2q33和20p13, 为定位克隆RLS致病基因或者易感基因提供了连锁图谱。最新基于高通量的SNPs分型平台开展的全基因组分析确立3个与RLS显著关联的区域: 6p21.2, 2p14和15q23。文章结合作者近年来从事不宁腿综合征遗传学的研究工作, 对该领域的重要成果进行了汇总和评述。  相似文献   

8.
Sleep and Biological Rhythms - The aim of this cross-sectional study was to determine the prevalence, risk factors, other associated sleep disorders and commodities of Restless Legs Syndrome (RLS)...  相似文献   

9.
植物性雌激素是一类广泛存在于植物中的既具有雌激素样又具有抗雌激素样活性的化合物,在治疗雌激素依赖性疾病中有着广阔的应用前景。  相似文献   

10.
The plant microbiome   总被引:1,自引:0,他引:1  
Plant genomes contribute to the structure and function of the plant microbiome, a key determinant of plant health and productivity. High-throughput technologies are revealing interactions between these complex communities and their hosts in unprecedented detail.  相似文献   

11.
The plant cytoskeleton   总被引:14,自引:0,他引:14  
  相似文献   

12.
13.
The plant cytoskeleton   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
《Current biology : CB》2023,33(6):R210-R214
  相似文献   

16.
Kinetochores are large protein complexes that bind to centromeres. By interacting with microtubules and their associated motor proteins, kinetochores both generate and regulate chromosome movement. Kinetochores also function in the spindle checkpoint; a surveillance mechanism that ensures that metaphase is complete before anaphase begins. Although the ultrastructure of plant kinetochores has been known for many years, only recently have specific kinetochore proteins been identified. The recent data indicate that plant kinetochores contain homologs of many of the proteins implicated in animal and fungal kinetochore function, and that the plant kinetochore is a redundant structure with distinct biochemical subdomains.  相似文献   

17.
钾是植物生长发育所必需的大量元素,是与氮、磷并列的植物营养的“三大要素”之一。不同植物种类或同种类植物的不同品种之间钾营养效率的差异非常显著,这为植物钾营养性状的遗传改良提供了科学依据  相似文献   

18.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

19.
The plant cell cycle   总被引:4,自引:0,他引:4  
Molecular controls of the plant cell cycle must integrate environmental signals within developmental contexts. Recent advances highlight the fundamental conservation of underlying cell cycle mechanisms between animals and plants, overlaid by a rich molecular and regulatory diversity that is specific to plant systems. Here we review plant cell cycle regulators and their control.  相似文献   

20.
The higher plant chondriome is highly dynamic both in terms of the morphology and velocity of individual mitochondria within any given cell. Plant mitochondrial dynamics is a relatively new area of research, but one that has developed considerably over the early years of this century due to the generation of mitochondrially targeted fluorescent protein constructs and stably transformed lines. Several putative members of the plant mitochondrial division apparatus have been identified, but no genes have been identified as being involved in mitochondrial fusion. Despite the highly dynamic nature of plant mitochondria there is little specific scientific evidence linking mitochondrial dynamics to organelle and cell function. Two exceptions to this are the changes in mitochondrial dynamics that are early events during the induction of cell death programmes, and the extensive mitochondrial fusion that occurs before cytokinesis, although in both cases the role(s) of these events are a matter for conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号