首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Endothelial function deteriorates with aging. On the other hand, exercise training improves the function of vascular endothelial cells. Endothelin-1 (ET-1), which is produced by vascular endothelial cells, has potent constrictor and proliferative activity in vascular smooth muscle cells and, therefore, has been implicated in regulation of vascular tonus and progression of atherosclerosis. We previously reported significantly higher plasma ET-1 concentration in middle-aged than in young humans, and recently we showed that plasma ET-1 concentration was significantly decreased by aerobic exercise training in healthy young humans. We hypothesized that plasma ET-1 concentration increases with age, even in healthy adults, and that lifestyle modification (i.e., exercise) can reduce plasma ET-1 concentration in previously sedentary older adults. We measured plasma ET-1 concentration in healthy young women (21-28 yr old), healthy middle-aged women (31-47 yr old), and healthy older women (61-69 yr old). The plasma level of ET-1 significantly increased with aging (1.02 +/- 0.08, 1.33 +/- 0.11, and 2.90 +/- 0.20 pg/ml in young, middle-aged, and older women, respectively). Thus plasma ET-1 concentration was markedly higher in healthy older women than in healthy young or middle-aged women (by approximately 3- and 2-fold, respectively). In healthy older women, we also measured plasma ET-1 concentration after 3 mo of aerobic exercise (cycling on a leg ergometer at 80% of ventilatory threshold for 30 min, 5 days/wk). Regular exercise significantly decreased plasma ET-1 concentration in the healthy older women (2.22 +/- 0.16 pg/ml, P < 0.01) and also significantly reduced their blood pressure. The present study suggests that regular aerobic-endurance exercise reduces plasma ET-1 concentration in older humans, and this reduction in plasma ET-1 concentration may have beneficial effects on the cardiovascular system (i.e., prevention of progression of hypertension and/or atherosclerosis by endogenous ET-1).  相似文献   

2.
Vascular endothelial cells produce endothelin (ET)-1, a potent vasoconstrictor peptide, and nitric oxide (NO), a potent vasodilator substance. There are interactions between ET-1 and NO. Exercise results in a marked decrease in renal blood flow. We previously reported that exercise causes an increase of ET-1 production in the kidney, whereas production of NO in the kidney is decreased. Furthermore, we recently revealed that the magnitude of decrease in blood flow to the kidney during exercise was significantly attenuated by the administration of the endothelin-A (ET(A)) receptor antagonist, strongly suggesting that endogenously increased ET-1 participates in the decrease of blood flow in the kidney during exercise. Because it was demonstrated that ET-1 depresses NO synthase (NOS) activity of cultured cells in vitro, we hypothesized that an increase of ET-1 production in kidney during exercise contributes to a decrease of NO production in kidney in vivo. We studied whether administration of the ET(A) receptor antagonist attenuates the decreases of NOS activity and NO production in the kidney during exercise. Rats performed treadmill running for 30 min after pretreatment with an ET(A) receptor antagonist (TA-0201, 0.5 mg/kg; TA-0201-treated exercise group) or vehicle (vehicle-treated exercise group). Control rats remained at rest (vehicle-treated sedentary group). Blood flow in the kidney was decreased by this exercise, but the magnitude of the decrease after pretreatment with TA-0201 was significantly smaller than that after pretreatment with vehicle. NOS activity in kidney was significantly lower in the vehicle-treated exercise group than in the vehicle-treated sedentary group, whereas that in the TA-0201-treated exercise group was significantly higher than that in the vehicle-treated exercise group. Expressions of endothelial NOS protein and NOx, the stable end product of NO, i.e., nitrite/nitrate, concentration in the kidney were significantly lower in the vehicle-treated exercise group than in the vehicle-treated sedentary group, whereas those in the TA-0201-treated exercise group were significantly higher than those in the vehicle-treated exercise group. The data suggest that increased ET-1 production in the kidney during exercise contributes to the decreases of NOS activity and NO production. Therefore, the present study provides a possibility that the exercise-induced increase in production of ET-1 in the kidney causes a decrease in blood flow in the kidney through two pathways, i.e., vasoconstrictive action and the action of attenuating NO production.  相似文献   

3.
Aging-induced deterioration of arterial stiffness is decreased by regular exercise, and increased nitric oxide (NO) production participates in this effect. Apelin regulates endothelial NO synthase in endothelial cells, promoting NO production. However, the effect of aerobic exercise training on circulating apelin levels in healthy middle-aged and older adults remains unknown. Accordingly, this study aimed to clarify the effects of regular aerobic exercise on apelin concentrations in middle-aged and older adults. Thirty-four healthy middle-aged and older subjects (67.0 ± 1.3 years) were randomly divided into two groups: exercise intervention and sedentary controls. Subjects in the training group completed 8-week of aerobic exercise training (60–70% peak oxygen uptake [VO2peak] for 45 min, 3 days/week). Before and after the intervention, we evaluated plasma apelin and nitrite/nitrate (NOx) concentrations, VO2peak, and arterial stiffness index. In the training group, VO2peak was significantly increased, and carotid β-stiffness was significantly decreased, after the intervention (P<0.05). Moreover, plasma apelin and NOx levels were significantly increased in the training group after the intervention (P<0.05). Additionally, there was a correlation between the training effects of plasma apelin levels and carotidβ-stiffness (r = −0.508, P = 0.032) and plasma NOx levels (r = 0.494, P = 0.037). By contrast, none of these parameters changed significantly in the control group. These results suggest that the increased in plasma apelin levels may be associated with exercise training-induced alternation of arterial stiffness in middle-aged and older adults.  相似文献   

4.
Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70?±?5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n?=?15) and control (n?=?15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85–90% of heart rate reserve [HRR] and 2 min active phase at 50–55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P?=?0.021, P?=?0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P?=?0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r?=?0. 771, P?=?0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r?=???0.595, P?=?0.019), and variation of NOx (r?=???0.572, P?=?0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure.  相似文献   

5.
The measurement of nitric oxide (NO) bioavailability is of great clinical interest in the assessment of vascular health. However, NO is rapidly oxidized to form nitrite and nitrate and thus its direct detection in biological systems is difficult. Venous plasma nitrite (nM concentrations) has been shown to be a marker of forearm NO production following pharmacological stimulation of the endothelium utilizing acetylcholine (Ach). In the present study, we demonstrate, within 15 apparently healthy subjects (34.1 +/- 7.3 years), that reactive hyperemia of the forearm, a physiological endothelial stimulus, results in a 52.5% increase in mean plasma nitrite concentrations (415 +/- 64.0 to 634 +/- 57.1 nM, P = 0.015). However, plasma nitrite is readily oxidized to nitrate within plasma, and thus its utility as a marker of NO production within the clinical setting may be limited. Alternatively, NOx (predominantly nitrate) is relatively stable in plasma (microM concentrations), but is produced by sources other than the vasculature and has been shown to be unsuitable as a measure of localized NO production. We reasoned that the principle source of NOx generation during exercise is NO production and thus have examined the change in NOx following treadmill exercise stress. In this study, 12 apparently healthy subjects showed an increase (from baseline) in venous NOx at peak effort and during recovery (12 +/- 9.1 and 17 +/- 15.3 microM respectively, P < 0.05). In contrast, 10 subjects with cardiovascular disease showed no significant increases. Additionally, a correlation between VO(2peak) and the change in circulating NOx (r(2) = 0.4585, P < or = 0.01) indicated the subjects who could exercise hardest also produced the most NO.  相似文献   

6.
目的:探讨膝下下肢动脉硬化闭塞症(ASO)患者行球囊扩张成形术前后血浆中内皮素-1(ET-1)和一氧化氮(NO)的水平变化及其临床意义。方法:收集我院血管外科2013年2月至2014年2月收治的行球囊扩张成形术的膝下ASO患者38例,比较术前和术后6 h、24 h、1周、1个月和3个月的血浆NO和ET-1水平变化,患者术后1个月和3个月行CT血管造影术(CTA)复查,判断是否发生血管再狭窄,并分析血管再狭窄与血浆NO和ET-1的关系。结果:所有患者术后6h血浆ET-1较术前显著升高(P0.05),术后24 h至1周略有下降但仍维持在较高水平,NO变化与ET-1相反;CTA检查未发现血管再狭窄者33例,血浆ET-1和NO在术后1个月恢复至术前水平,并维持至术后3个月;而CTA检查发现血管再狭窄者5例,血浆ET-1术后1个月至3个月仍维持在较高水平,血浆NO水平变化与ET-1相反。结论:血浆NO和ET-1与膝下ASO患者球囊扩张成形术后血管再狭窄相关。  相似文献   

7.
Arterial stiffness is higher in strength-trained humans and lower in endurance-trained humans. However, the mechanisms underlying these different adaptations are unclear. Vascular endothelium-derived factors, such as endothelin-1 (ET-1) and nitric oxide (NO), play an important role in the regulation of vascular tonus. We hypothesized that endogenous ET-1 and NO participate in the adaptation of arterial stiffness in different types of exercise training. The purpose of this study was to investigate plasma ET-1 and NO concentrations and arterial stiffness in strength- and endurance-trained men. Young strength-trained athletes (SA; n = 11), endurance-trained athletes (EA; n = 12), and sedentary control men (C; n = 12) participated in this study. Maximal handgrip strength in SA and maximal oxygen uptake in EA were markedly greater than in C. Aortic pulse-wave velocity, which is an established index of arterial stiffness, was higher in SA and lower in EA than in C. Additionally, we measured systemic arterial compliance (SAC) using carotid artery applanation tonometry and Doppler echocardiography, because arterial stiffness is a primary determinant of the compliance. SAC was lower in SA and higher in EA compared with that in C. Plasma ET-1 concentrations were higher in SA compared with C and EA. We did not find significant differences in plasma NO concentrations (measured as the stable end product of NO, i.e., nitrite/nitrate). The relationships of plasma ET-1 concentrations to aortic pulse-wave velocity and SAC were linear. These results suggest that differences in endogenous ET-1 may partly participate in the mechanism underlying different adaptations of arterial stiffness in strength- and endurance-trained men.  相似文献   

8.
Nitric oxide (NO) bioavailability is important in vascular health, but unsuitable as a clinical measure due to biological oxidation. Total nitrogen oxides (NO(x)) are stable but background nitrate levels make it difficult to detect disease-based variation. We investigated the clinical discriminatory value of NO(x) as it relates to exercise capability (VO(2peak)) and brachial artery reactivity (BAR, an NO-dependent measure of endothelial health), in healthy (H), increased risk (RF), and known cardiovascular disease (CVD) subjects. BAR was measured using forearm occlusion/hyperemia stimulus. Subjects performed a maximal graded exercise test (GXT). Blood at rest, exercise termination, and 10 min into recovery was mixed equally with 0.1 M NaOH at 4 degrees C, filtered, and stored at -70 degrees C. NO(x) was measured by chemiluminescence. Seven of the RF group then exercise-trained for 6 months prior to retesting. The H group (n = 12) was younger, had higher VO(2peak), HDL levels, and baseline NO(x) values than the RF (n = 15) and CVD (n = 10) groups. NO(x) increased from baseline to recovery in the H group only (75.85 +/- 19.04 microM vs 97.76 +/- 31.93 microM; P 相似文献   

9.
Endogenous endothelin action is augmented in human obesity and type 2 diabetes and contributes to endothelial dysfunction and impairs insulin-mediated vasodilation in humans. We hypothesized that insulin resistance-associated hyperinsulinemia could preferentially drive endothelin-mediated vasoconstriction. We applied hyperinsulinemic-euglycemic clamps with higher insulin dosing in obese subjects than lean subjects (30 vs. 10 mU.m(-2).min(-1), respectively), with the goal of matching insulin's nitric oxide (NO)-mediated vascular effects. We predicted that, under these circumstances, insulin-stimulated endothelin-1 (ET-1) action (assessed with the type A endothelin receptor antagonist BQ-123) would be augmented in proportion to hyperinsulinemia. NO bioactivity was assessed using the nitric oxide synthase inhibitor N(G)-monomethyl-l-arginine. Insulin-mediated vasodilation and insulin-stimulated NO bioavailability were well matched across groups by this approach. As expected, steady-state insulin levels were approximately threefold higher in obese than lean subjects (109.2 +/- 10.2 pmol/l vs. 518.4 +/- 84.0, P = 0.03). Despite this, the augmentation of insulin-mediated vasodilation by BQ-123 was not different between groups. ET-1 flux across the leg was not augmented by insulin alone but was increased with the addition of BQ-123 to insulin (P = 0.01 BQ-123 effect, P = not significant comparing groups). Endothelin antagonism augmented insulin-stimulated NO bioavailability and NOx flux, but not differently between groups and not proportional to hyperinsulinemia. These findings do not support the hypothesis that insulin resistance-associated hyperinsulinemia preferentially drives endothelin-mediated vasoconstriction.  相似文献   

10.
Cardiac myocytes produce nitric oxide (NO). We studied the effects of intense exercise on the expression of NO synthase (NOS) and the tissue level of nitrite (NO(2)(-))/nitrate (NO(3)(-)) (i.e., NOx), which are stable end products of NO in the heart. Rats ran on a treadmill for 45 min. Immediately after this exercise, the heart was quickly removed. Control rats remained at rest during the same 45-min period. The mRNA level of endothelial NOS (eNOS) in the heart was markedly lower in the exercised rats than in the control rats. Western blot analysis confirmed downregulation of eNOS protein in the heart after exercise. Tissue NOx level in the heart was significantly lower in the exercised rats than in the control rats. The present study revealed for the first time that production of NO in the heart is decreased by intense exercise. Because NO attenuates positive inotropic and chronotropic responses to beta(1)-adrenergic stimulation in the heart, the decrease in cardiac production of NO by intense exercise may contribute to the acceleration of increase in myocardial contractility and heart rate during intense exercise.  相似文献   

11.
Obesity is associated with endothelial dysfunction that may contribute to the development of diabetes, hypertension, and atherosclerosis. Endothelin-1 (ET-1), which is produced mostly by vascular endothelial cells, has potent vasoconstrictor and proliferative activity in vascular smooth muscle cells and, therefore, has been implicated in regulation of vascular tonus and the progression of atherosclerosis, suggesting that ET-1 may be important in endothelial dysfunction. We studied whether diet-induced weight loss (i.e., lifestyle modification) affects plasma ET-1 concentration in obese individuals. We measured plasma ET-1 concentration in seven obese men (age: 48 +/- 4 years old, body mass index: 27.7 +/- 0.5 kg/m2) before and after a 3-month, diet-induced weight reduction program (i.e., lifestyle modification program). Caloric restriction reduced body weight from 78 +/- 3 to 68 +/- 2 kg (P < 0.001) and resulted in 12.1 +/- 1.2% reduction in body mass index (24.3 +/- 0.3 kg/m(2), P < 0.0001). After the weight reduction program, systolic and diastolic blood pressure significantly decreased (128 +/- 7 vs. 115 +/- 4 mm Hg, P < 0.05 and 88 +/- 4 vs. 77 +/- 2 mm Hg, P < 0.01, respectively). The plasma level of ET-1 significantly decreased after the program (5.1 +/- 0.4 vs. 4.0 +/- 0.3 pg/ml, P < 0.05). The percentage systolic blood pressure reduction and percentage plasma ET-1 concentration reduction was in a linear relationship (r = 0.86, P < 0.05). Furthermore, the relationship between percentage weight reduction and percentage plasma ET-1 concentration reduction was linear (r = 0.87, P < 0.05). We conclude that weight loss by low-calorie diet (i.e., lifestyle modification) reduces plasma ET-1 concentration in obese individuals. This reduction may contribute to the improvement of obesity-induced endothelial dysfunction.  相似文献   

12.
"Regular physical exercise plays an important role in reducing obesity, preventing hyperglycemia, lowering blood lipids and reducing systemic blood pressure. But the question about the nature of the relationship between homocysteine, nitric oxide and physical activity remains unanswered. The aim of this study was to investigate the effects of callisthenic exercises on plasma lipids, homocysteine (Hcy), total nitric oxide (NOx) and body composition in middle-aged healthy sedentary women. Forty-two middle-aged women (ages: 28-49; mean: 41.40 ± 7.3 years) were asked to perform a callisthenic exercise 50 min per session, 3 times per week for 12 weeks in a sports hall. Before and after the exercise, plasma lipids (total cholesterol, high density lipoprotein, low density lipoprotein and triglyceride), Hcy and NO were determined. Body composition, including body mass index, fat percentage, fat free mass, resting systolic and diastolic blood pressures and heart rates were measured. After a 12-week callisthenic exercise program, plasma NOx and Hcy levels were found to be significantly increased (P < 0.05). Body composition parameters, lipid profile, resting systolic and diastolic blood pressures and heart rate significantly decreased (P < 0.05). Aerobic callisthenic exercises characterized by 50 min/day and 3 days/week resulted in positive changes in important health parameters like reducing obesity, lowering blood lipids and increasing plasma NOx. Cardiovascular improvements might be dependent on the increase of NOx values. But callisthenic exercise in such intensity did not lower the plasma Hcy level. Moreover, Hcy level increased significantly. The result shows that if the Hcy is in the normal levels in healthy subjects, long-term callisthenic exercise do not decrease the Hcy levels despite some beneficial effects on health. On the contrary, the Hcy levels are increased by long-term callisthenic exercises."  相似文献   

13.
To examine whether or not the levels of NOx (nitrite; NO2- and nitrate; NO3-) in coronary circulating blood reflect endothelial dysfunction due to coronary atherosclerosis, NOx levels in plasma obtained from ostium of left coronary artery and coronary sinus of patients who complained of chest pain were evaluated in relation to their coronary angiographic findings. Prior to the study, a HPLC-Griess system for NOx measurement was critically evaluated. This system has a detection limit of 0.1 microM of NO2- and NO3- by 10 microl of loading and was able to distinguish a difference of 0.1-0.2 microM of these substances. Heparin (1 U/10 microl) did not affect the detective and discriminative abilities. NO3- difference, calculated from sino-arterial difference of NO3-, was almost zero (-0.2 +/- 0.2 microM) in patients with either normal coronary arteries or mild organic coronary stenosis (< or = 20% narrowing), while a significant negative value (-5.9 +/- 1.7 microM) was obtained from patients with significant stenosis (> or = 70% narrowing) in the left coronary arteries. These results demonstrate reliable ability on the HPLC-Griess system in evaluating NO2- and NO3- in biological samples, and that the negative NO3- difference through coronary circulation may reflect endothelial dysfunction in the patients with coronary atherosclerosis with severe organic stenosis.  相似文献   

14.
Clinically significant increases in pulmonary vascular resistance have been noted on acute withdrawal of inhaled nitric oxide (NO). Endothelin (ET)-1 is a vasoactive peptide produced by the vascular endothelium that may participate in the pathophysiology of pulmonary hypertension. The objectives of this study were to determine the effects of inhaled NO on endogenous ET-1 production in vivo in the intact lamb and to determine the potential role of ET-1 in the rebound pulmonary hypertension associated with the withdrawal of inhaled NO. Seven 1-mo-old vehicle-treated control lambs and six PD-156707 (an ET(A) receptor antagonist)-treated lambs were mechanically ventilated. Inhaled NO (40 parts per million) was administered for 24 h and then acutely withdrawn. After 24 h of inhaled NO, plasma ET-1 levels increased by 119.5 +/- 42.2% (P < 0.05). Western blot analysis revealed that protein levels of preproET-1, endothelin-converting enzyme-1alpha, and ET(A) and ET(B) receptors were unchanged. On acute withdrawal of NO, pulmonary vascular resistance (PVR) increased by 77.8% (P < 0.05) in control lambs but was unchanged (-5.5%) in PD-156707-treated lambs. Inhaled NO increased plasma ET-1 concentrations but not gene expression in the intact lamb, and ET(A) receptor blockade prevented the increase in PVR after NO withdrawal. These data suggest a role for ET-1 in the rebound pulmonary hypertension noted on acute withdrawal of inhaled NO.  相似文献   

15.
Endurance training aiming at eliciting further increase of physical performance of competitive athletes demands serious time and intensity constraints. In addition, very high intensity training could lead to "over-loading" frequently associated with increased concentration of plasma lactate after maximum intensity exercise and proteinuria. We hypothesized that a newly available complex dietary (CD) supplement by providing the necessary substances and cofactors for increased tissue metabolism would reduce the increase in plasma lactate concentration and proteinuria after maximum intensity exercise in swimmers undergoing high intensity training and exercise (70 km/week, for 6 weeks) period. Subjects involved in the investigation were junior swimmers (n = 10). Data were collected four times during the third macrocycle of training; 1st: before, 2nd: after 10 days and 3rd: 14 days after withdrawal of CD-supplement, whereas 4th: after 10 days of placebo treatment. The study was a double-blinded random controlled investigation. In the first period, plasma lactate concentration was 8.4 +/- 2.1 mmol/l, whereas protein level in the urine was 8.9 +/- 5.8 mg/l. After use of CD-supplement plasma lactate concentration significantly decreased to 5.5 +/- 1.9 mmol/l and proteinuria decreased to 1.3 +/- 2.1 mg/l (p<0.05). Importantly, the intensity and the volume of the training did not change during the observation period. Thus, use of CD-supplement significantly reduced the increase in plasma lactate and proteinuria after maximum intensity exercise in athletes (swimmers) undergoing high endurance training despite maintained training load. We propose that the special components of CD-supplement support the mechanisms responsible for lactate elimination and reduction of protein catabolism and/or increase of protein reabsorption. These adaptations are likely to allow the athletes to undergo higher intensity training resulting in greater performance.  相似文献   

16.
Endurance exercise is efficacious in reducing arterial stiffness. However, the effect of resistance training (RT) on arterial stiffening is controversial. High-intensity, high-volume RT has been shown to increase arterial stiffness in young adults. We tested the hypothesis that an RT protocol consisting of progressively higher intensity without concurrent increases in training volume would not elicit increases in either central or peripheral arterial stiffness or alter aortic pressure wave reflection in young men and women. The RT group (n = 24; 21 +/- 1 years) performed two sets of 8-12 repetitions to volitional fatigue on seven exercise machines on 3 days/week for 12 weeks, whereas the control group (n = 18; 22 +/- 1 years) did not perform RT. Central and peripheral arterial pulse wave velocity (PWV), aortic pressure wave reflection (augmentation index; AIx), brachial flow-mediated dilation (FMD), and plasma levels of nitrate/nitrite (NOx) and norepinephrine (NE) were measured before and after RT. RT increased the one-repetition maximum for the chest press and the leg extension (P < 0.001). RT also increased lean body mass (P < 0.01) and reduced body fat (%; P < 0.01). However, RT did not affect carotid-radial, carotid-femoral, and femoral-distal PWV (8.4 +/- 0.2 vs. 8.0 +/- 0.2 m/sec; 6.5 +/- 0.1 vs. 6.3 +/- 0.2 m/sec; 9.5 +/- 0.3 vs. 9.5 +/- 0.3 m/sec, respectively) or AIx (2.5% +/- 2.3% vs. 4.8% +/- 1.8 %, respectively). Additionally, no changes were observed in brachial FMD, NOx, NE, or blood pressures. These results suggest that an RT protocol consisting of progressively higher intensity without concurrent increases in training volume does not increase central or peripheral arterial stiffness or alter aortic pressure wave characteristics in young subjects.  相似文献   

17.
Overproduction of nitric oxide (NO) in the liver has been implicated as an important event in endotoxin shock and in other models of hepatic inflammation and injury. The present study was undertaken to evaluate the effect of ONO-1714, a potent and specific inhibitor of inducible NO synthase (iNOS), on acetaminophen-induced hepatotoxicity in the rats. Oral administration of ONO-1714 dose-dependently inhibited NOx (NO2- and NO3-) accumulation in rat plasma after lipopolysaccharide (LPS) treatment. Intraperitoneal acetaminophen at 1 g/kg caused damage to the centrilobular regions of the liver and increase in serum alanine and aspartate transaminase (ALT and AST, respectively) levels accompanied by elevated plasma NOx levels after 24 h. Oral administration of ONO-1714 at 10 and 100 microg/kg dose-dependently reduced the acetaminophen-induced hepatic tissue damage and the increases in serum ALT and AST levels. ONO-1714 also blocked the increase in plasma NOx concentrations. These findings demonstrate that oral ONO-1714, an iNOS inhibitor, protects against acetaminophen-evoked hepatic inflammation/injury, strongly suggesting that NO produced by iNOS plays a key role in the pathogenesis of this drug-induced hepatotoxicity.  相似文献   

18.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

19.
The present study was undertaken to examine the relationships among the levels of nitric oxide (NO), monoamines, and blood glucose in the diabetic hippocampus. The levels of NO and monoamines (serotonin, 5-hydroxytryptamine [5-HT] and dopamine [DA]) were simultaneously measured in several experiments, using in vivo microdialysis techniques. We used both experimentally and spontaneously diabetic rats as the diabetic animal model, and compared the findings with those obtained from non-diabetic rats. The effects of the changed level of blood glucose due to insulin administration on the levels of NO, 5-HT, and DA were assessed. Total NO metabolite levels (NOx) were calculated as the sum of nitrite (NO2-) and nitrate (NO3-) levels. The results in the present study showed that: (1) the plasma levels of NOx in both diabetic rats were low compared to those in control rats, (2) the hippocampal NOx levels in both diabetic rats were almost the same as those in control rats, while the levels of 5-HT and DA were low in the diabetics, and (3) a sudden decrease in the plasma glucose level due to insulin administration reduced the NOx level as well as enhanced the 5-HT level in the diabetic hippocampus, a finding consistent with the results of 7 days administration of insulin. Taken together, these findings suggest that changes in the plasma glucose level cause, at least in part, the changes in the levels of NOx and monoamines in the diabetic brain.  相似文献   

20.
目的:探讨有氧康复运动对慢性心力衰竭(chronic cardiac failure,CHF)患者心室重构及血管内皮功能的影响。方法:78例CHF患者随机分为运动组(n=39)、对照组(n=39)。对照组给予常规内科药物治疗、日常活动能力训练,运动组在此基础上根据美国心脏病学会(American Heart Association,AHA)的《三阶段康复运动方案》进行有氧康复运动,共持续12周。比较两组治疗前后心脏结构和功能、血管内皮功能及生活质量的改善情况。结果:干预后,两组左室收缩末期内径(left ventricular end systolic diameter,LVESD)、左室舒张末期内径(left ventricular end-diastolic diameter,LVEDD)、明尼苏达心衰生活质量(Minnesota Living With Heart Failure,MLHF)评分、血清内皮素-1(Endothelin-1,ET-1)、血管紧张素Ⅱ(angiotensin Ⅱ,Ang Ⅱ)水平均明显减小,左室射血分数(left ventricular ejection fraction,LVEF)、6分钟步行试验(6 minute walking test,6MWT)、血清一氧化氮(nitric oxide,NO)、降钙素基因相关肽(calcitonin gene-related peptide,CGRP)水平均明显升高,且运动组LVESD、LVEDD、MLHF评分、血清ET-1、Ang Ⅱ水平明显低于对照组,LVEF、6MWT、血清NO、CGRP水平明显高于对照组,差异均有统计学意义(P0.05)。运动组干预期间心衰再入院率显著低于对照组,差异均有统计学意义(P0.05)。结论:有氧运动康复训练有助于改善CHF患者的血管内皮功能,延缓或逆转心室重构,提高生活质量,改善预后。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号