首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7?days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1?day in cold and to 27%/28% after 7?days in cold) while beta3-AR were increased (to 216% of control) when 7?days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.  相似文献   

2.
Nitric oxide in the gut is produced by nNOS in enteric neurons and by eNOS in smooth muscle cells. The eNOS in smooth muscle is activated by vasoactive intestinal peptide (VIP) released from enteric neurons. In the present study, we examined the effect of nitric oxide on VIP-induced eNOS activation in smooth muscle cells isolated from human intestine and rabbit stomach. NOS activity was measured as formation of the 1:1 co-product, l-citrulline from l-arginine. VIP caused an increase in l-citrulline production that was inhibited by NO in a concentration dependent manner (IC(50)~25 microM; maximal inhibition 72% at 100 microM NO). Basal l-citrulline production, however, was unaffected by NO. The effect was not mediated by cGMP/PKG since the PKG inhibitor KT5823 had no effect on eNOS autoinhibition. The autoinhibition was selective for NO since the co-product l-citrulline had no effect on VIP-induced NOS activation. Similar effects were obtained in rabbit gastric and human intestinal smooth muscle cells. The results suggest that NO produced in smooth muscle cells as a result of the activation of eNOS by VIP exerts an autoinhibitory restraint on eNOS thereby regulating the balance of the VIP/cAMP/PKA and NO/cGMP/PKG pathways that regulate the relaxation of gut smooth muscle.  相似文献   

3.
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.  相似文献   

4.
Vascular alpha(2B)-adrenoceptors (alpha(2B)-AR) may mediate vasoconstriction and contribute to the development of hypertension. Therefore, we hypothesized that blood pressure would not increase as much in mice with mutated alpha(2B)-AR as in wild-type (WT) mice following nitric oxide (NO) synthase (NOS) inhibition with N(omega)-nitro-l-arginine (l-NNA, 250 mg/l in drinking water). Mean arterial pressure (MAP) was recorded in heterozygous (HET) alpha(2B)-AR knockout mice and WT littermates using telemetry devices for 7 control and 14 l-NNA treatment days. MAP in HET mice was increased significantly on treatment days 1 and 4 to 14, whereas MAP did not change in WT mice (days 0 and 14 = 113 +/- 3 and 114 +/- 4 mmHg in WT, 108 +/- 0.3 and 135 +/- 13 mmHg in HET, P < 0.05). MAP was significantly higher in HET than in WT mice days 10 through 14 (P < 0.05). Thus blood pressure increased more rather than less in mice with decreased alpha(2B)-AR expression. We therefore examined constrictor responses to phenylephrine (PE, 10(-9) to 10(-4) M) with and without NOS inhibition to determine basal NO contributions to arterial tone. In small pressurized mesenteric arteries (inner diameter = 177 +/- 5 microm), PE constriction was decreased in untreated HET arteries compared with WT (P < 0.05). l-NNA (100 microM) augmented PE constriction more in HET arteries than in WT arteries, and responses were not different between groups in the presence of l-NNA. Acetylcholine dilated preconstricted arteries from HET mice more than arteries from WT mice. Endothelial NOS expression was increased in HET compared with WT mesenteric arteries by Western analysis. Griess assay showed increased NO(x) concentrations in HET plasma compared with those in WT plasma. These data demonstrate that diminished alpha(2B)-AR expression increases the dependence of arterial pressure and vascular tone on NO production and that vascular alpha(2B)-AR either directly or indirectly regulates vascular endothelial NOS function.  相似文献   

5.
Nitric oxide (NO) inhibits the release of acetylcholine and cholinergic contractions in the small intestine of several species, but no information is available about the mouse ileum. This study examines the effects of NO on the electrically evoked release of [3H]acetylcholine and smooth muscle contraction in myenteric plexus-longitudinal muscle preparations of wild-type mice and of neuronal NO synthase (nNOS) and endothelial NOS (eNOS) knockout mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) and the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) concentration dependently increased the evoked [3H]acetylcholine release and cholinergic contractions in preparations from wild-type mice and from eNOS knockout mice. Effects of L-NNA were specifically antagonized by L-arginine. In contrast, L-NNA and ODQ did not modify the release and contractions in preparations from nNOS knockout mice. The NO donor S-nitroso-N-acetyl-DL-penicillamine inhibited the electrically evoked release of [3H]acetylcholine and longitudinal muscle contractions in a quantitatively similar manner in wild-type preparations as well as in nNOS and eNOS knockout preparations. We conclude that endogenous NO released by electrical field stimulation tonically inhibits the release of acetylcholine. Furthermore, data suggest that nNOS and not eNOS is the enzymatic source of NO-mediating inhibition of cholinergic neurotransmission in mouse ileum.  相似文献   

6.
Administration of beta-adrenergic receptor (beta-AR) agonists, especially beta(3)-AR agonists, is well known to increase thermogenesis in rodents and humans. In this work we studied the role of the beta(3)-AR in regulating mRNA expression of genes involved in thermogenesis, i.e., mitochondrial uncoupling proteins UCP2 and UCP3, and peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1), in mouse skeletal muscle. For this purpose, different beta(3)-AR agonists were administered acutely to both wild type mice and mice whose beta(3)-AR gene has been disrupted (beta(3)-AR KO mice). CL 316243 increased the expression of UCP2, UCP3 and PGC-1 in wild type mice only. By contrast, BRL 37344 and CGP 12177 increased the expression of UCP2 and UCP3 in both wild type and beta(3)-AR KO mice, whereas they increased the expression of PGC-1 in wild type mice only. Finally, acute (3 h) cold exposure increased the expression of UCP2 and UCP3, but not PGC-1, in skeletal muscle of both wild type and beta(3)-AR KO mice. These results show that selective stimulation of the beta(3)-AR affects the expression of UCP2, UCP3 and PGC-1 in skeletal muscle. This effect is probably indirect, as muscle does not seem to express beta(3)-AR. In addition, our data suggest that BRL 37344 and CGP 12177 act, in part, through an as yet unidentified receptor, possibly a beta(4)-AR.  相似文献   

7.
Beta3-adrenergic receptors (AR) are nearly exclusively expressed in brown and white adipose tissues, and chronic activation of these receptors by selective agonists has profound anti-diabetes and anti-obesity effects. This study examined metabolic responses to acute and chronic beta3-AR activation in wild-type C57Bl/6 mice and congenic mice lacking functional uncoupling protein (UCP)1, the molecular effector of brown adipose tissue (BAT) thermogenesis. Acute activation of beta3-AR doubled metabolic rate in wild-type mice and sharply elevated body temperature and BAT blood flow, as determined by laser Doppler flowmetry. In contrast, beta3-AR activation did not increase BAT blood flow in mice lacking UCP1 (UCP1 KO). Nonetheless, beta3-AR activation significantly increased metabolic rate and body temperature in UCP1 KO mice, demonstrating the presence of UCP1-independent thermogenesis. Daily treatment with the beta3-AR agonist CL-316243 (CL) for 6 days increased basal and CL-induced thermogenesis compared with naive mice. This expansion of basal and CL-induced metabolic rate did not require UCP1 expression. Chronic CL treatment of UCP1 KO mice increased basal and CL-stimulated metabolic rate of epididymal white adipose tissue (EWAT) fourfold but did not alter BAT thermogenesis. After chronic CL treatment, CL-stimulated thermogenesis of EWAT equaled that of interscapular BAT per tissue mass. The elevation of EWAT metabolism was accompanied by mitochondrial biogenesis and the induction of genes involved in lipid oxidation. These observations indicate that chronic beta3-AR activation induces metabolic adaptation in WAT that contributes to beta3-AR-mediated thermogenesis. This adaptation involves lipid oxidation in situ and does not require UCP1 expression.  相似文献   

8.
9.
We investigated whether nitric oxide (NO) exposure alters the balance between NO and endothelium-derived hyperpolarizing factor (EDHF) released from rat renal arteries. To produce states of acutely or chronically excessive NO, lipopolysaccharide (LPS) was administered intraperitoneally to rats in a single dose of 4 mg/kg (LPS-single group) or in stepwise doses of 0.5, 1.0 and 2.0 mg/kg every other day (LPS-repeated group). On the day after LPS treatment, the protein levels of inducible NO synthase (iNOS) and endothelial NOS (eNOS) were measured, and the relaxation responses were determined in the renal arteries. The protein levels of iNOS markedly increased in both LPS-treated groups, while those of eNOS significantly increased in the LPS-repeated group compared with those in the respective control groups. In both LPS-treated groups, the relaxations in response to acetylcholine (ACh) and sodium nitroprusside remained unchanged. The ACh-induced relaxations in the presence of N(G)-nitro-L-arginine methyl ester, a NOS inhibitor, or by 1H-[1, 2, 4-] oxadiazole [4, 3-a] quinoxalin-1-one, a soluble guanylyl cyclase inhibitor, i.e. EDHF-mediated relaxations were significantly impaired in the LPS-repeated group but not in the LPS-single group, indicating increase in NO-mediated relaxation in the LPS-repeated group. These changes in the protein levels and EDHF-mediated relaxations induced by ACh observed in the LPS-repeated group were restored by treatment with NOX-100, a NO scavenger. These results suggest that persistent but not acute excessive NO exposure in rats impairs EDHF-mediated relaxation in renal arteries, leading to a compensatory upregulation of the eNOS/NO pathway.  相似文献   

10.
11.
In congestive heart failure (CHF), coronary vascular relaxation is associated with endothelial dysfunction and nitric oxide (NO) deficiency. This study explored the reversibility of this process in hearts recovering from CHF and its related mechanisms. Dogs were chronically instrumented to measure cardiac function and coronary blood flow (CBF). Heart failure was induced by right ventricular pacing at 240 beats/min for 3-4 wk, and cardiac recovery (CR) was allowed by the termination of cardiac pacing for 3-4 wk after the development of CHF, in which left ventricular contractile function was restored by 80-90%. The endothelium-dependent CBF response to bradykinin and acetylcholine was depressed in CHF and fully restored in CR. Myocardial NOx (nitrate/nitrite), endothelial NO synthase (eNOS) mRNA expression, total protein, and phosphorylated eNOS decreased significantly in failing hearts. However, myocardial NOx recovered to 78% of control and phosphorylated eNOS was fully restored in CR, despite the fact that eNOS mRNA expression and protein levels remained lower than control. Furthermore, the endothelium-independent CBF response to nitroglycerin did not change in CHF; however, it increased by 75% in CR, in conjunction with a near threefold increase in the phosphorylation of vasodilation-stimulated phosphoprotein (VASP) at Ser(239) in recovering hearts. Thus the complete restoration of endothelium-dependent coronary vascular relaxation during cardiac recovery from CHF was mediated by 1) a restoration of phosphorylated eNOS for partial recovery of the NO production and 2) an increase in cGMP/cGMP-dependent protein kinase-I pathway signaling activity for the enhancement of coronary vascular smooth muscle relaxation in response to NO.  相似文献   

12.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

13.
The peptide hormone relaxin, which attains high circulating levels during pregnancy, has been shown to depress small-bowel motility through a nitric oxide (NO)-mediated mechanism. In the present study we investigated whether relaxin also influences gastric contractile responses in mice. Female mice in proestrus or estrus were treated for 18 h with relaxin (1 microg s.c.) or vehicle (controls). Mechanical responses of gastric fundal strips were recorded via force-displacement transducers. Evaluation of the expression of nitric oxide synthase (NOS) isoforms was performed by immunohistochemistry and Western blot. In control mice, neurally induced contractile responses elicited by electrical field stimulation (EFS) were reduced in amplitude by addition of relaxin to the organ bath medium. In the presence of the NO synthesis inhibitor l-NNA, relaxin was ineffective. Direct smooth muscle contractile responses were not influenced by relaxin or l-NNA. In strips from relaxin-pretreated mice, the amplitude of neurally induced contractile responses was also reduced in respect to the controls, while that of direct smooth muscle contractions was not. Further addition of relaxin to the bath medium did not influence EFS-induced responses, whereas l-NNA did. An increased expression of NOS I and NOS III was observed in gastric tissues from relaxin-pretreated mice. In conclusion, the peptide hormone relaxin depresses cholinergic contractile responses in the mouse gastric fundus by up-regulating NO biosynthesis at the neural level.  相似文献   

14.
15.
Signaling via endothelial nitric oxide synthase (NOS3) limits the heart's response to beta-adrenergic (beta-AR) stimulation, which may be protective against arrhythmias. However, mechanistic data are limited. Therefore, we performed simultaneous measurements of action potential (AP, using patch clamp), Ca2+ transients (fluo 4), and myocyte shortening (edge detection). L-type Ca2+ current (ICa) was directly measured by the whole cell ruptured patch-clamp technique. Myocytes were isolated from wild-type (WT) and NOS3 knockout (NOS3-/-) mice. NOS3-/- myocytes exhibited a larger incidence of beta-AR (isoproterenol, 1 microM)-induced early afterdepolarizations (EADs) and spontaneous activity (defined as aftercontractions). We also examined ICa, a major trigger for EADs. NOS3-/- myocytes had a significantly larger beta-AR-stimulated increase in ICa compared with WT myocytes. In addition, NOS3-/- myocytes had a larger response to beta-AR stimulation compared with WT myocytes in Ca2+ transient amplitude, shortening amplitude, and AP duration (APD). We observed similar effects with specific NOS3 inhibition [L-N5-(1-iminoethyl)-ornithine (l-NIO), 10 microM] in WT myocytes as with NOS3 knockout. Specifically, l-NIO further increased isoproterenol-stimulated EADs and aftercontractions. l-NIO also further increased the isoproterenol-stimulated ICa, Ca2+ transient amplitude, shortening amplitude, and APD (all P < 0.05 vs isoproterenol alone). l-NIO had no effect in NOS3-/- myocytes. These results indicate that NOS3 signaling inhibits the beta-AR response by reducing ICa and protects against arrhythmias. This mechanism may play an important role in heart failure, where arrhythmias are increased and NOS3 expression is decreased.  相似文献   

16.
It has been reported that nitric oxide (NO) is involved in the relaxation mechanism of ginsenoside saponin in various smooth muscle in experimental animals. Although ginsenoside Rg(3) showed both endothelium-dependent and -independent component relaxation in vascular smooth muscle, the action mechanism of the relaxation of corporal muscle is not clear. We, thus, investigated the relaxation mechanism of ginsenoside Rg(3) using isolated canine corpus cavernosum. Ginsenoside Rg(3) concentration-dependently relaxed the canine corpus cavernosum that had been contracted by phenylephrine (PE), in which IC(50) was 1.68 x 10(-5) g/ml. Ginsenoside Rg(3) significantly (P < 0.05) potentiated acetylcholine (ACh)-induced relaxation in endothelium intact corpus cavernosum. Methylene blue (MB) but not N(omega)-nitro-L-arginine methylester (L-NAME) or ODQ (1H-[1,2,4]oxadiazol-[4,3-]quinoxsalin-1-one) modified the dose-response curve of ginsenoside Rg(3). Ginsenoside Rg(3) also significantly potentiated relaxation response to UV light in the presence of streptozotocin (STZ), which was almost completely (P < 0.01) blocked by ODQ. Ginsenoside Rg(3) concentration-dependently inhibited corporal phosphodiesterases (PDE), which resulted in increase of cyclic adenosine monophosphate (cAMP) as well as cyclic guanosine monophosphate (cGMP) contents in corporal smooth muscles. MB inhibited the accumulation of cGMP but not cAMP by ginsenoside Rg(3). These results indicate that mechanism responsible for the relaxation by ginsenoside Rg(3) is not by stimulating endothelial nitric oxide synthase (eNOS) of the canine corporal smooth muscle but by increasing cyclic nucleotide levels through PDE inhibition.  相似文献   

17.
The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) or the inducible NOS (iNOS) inhibitor l-N(6)-(1-iminoethyl)-lysine (l-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during l-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. l-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.  相似文献   

18.
In gastrointestinal smooth muscle, the neuropeptides vasoactiveintestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) induce relaxation by interacting withVIP2/PACAP3 receptors coupled via Gs toadenylyl cyclase and with distinct receptors coupled viaGi1 and/orGi2 to a smooth muscle endothelial nitric oxide synthase (eNOS). The present study identifies the receptoras the single-transmembrane natriuretic peptide clearance receptor(NPR-C). RT-PCR and Northern analysis demonstrated expression of thenatriuretic peptide receptors NPR-C and NPR-B but not NPR-A in rabbitgastric muscle cells. In binding studies using125I-labeled atrial natriureticpeptide (125I-ANP) and125I-VIP as radioligands, VIP,ANP, and the selective NPR-C ligand cANP(4-23) bound with highaffinity to NPR-C. ANP, cANP-(4-23), and VIP initiated identicalsignaling cascades consisting ofCa2+ influx, activation of eNOSvia Gi1 andGi2, stimulation of cGMP formation, and muscle relaxation. NOS activity and cGMP formation wereabolished (93 ± 3 to 96 ± 2% inhibition) by nifedipine,pertussis toxin, the NOS inhibitor,NG-nitro-L-arginine,and the antagonists ANP-(1-11) and VIP-(10-28). NOS activitystimulated by all three ligands in muscle membranes was additivelyinhibited by Gi1 andGi2 antibodies (82 ± 2 to 84 ± 1%). In reconstitution studies, VIP, cANP-(4-23), and guanosine 5'-O-(3-thiotriphosphate) stimulated NOS activity inmembranes of COS-1 cells cotransfected with NPR-C and eNOS. Theresults establish a unique mechanism for G protein-dependent activation of a constitutive NOS expressed in gastrointestinal smooth muscle involving interaction of the relaxant neuropeptides VIP and PACAP with a single-transmembrane natriuretic peptide receptor, NPR-C.

  相似文献   

19.
Role of β3-AR dysregulation, as either cardio-conserving or cardio-disrupting mediator, remains unknown yet. Therefore, we examined the molecular mechanism of β3-AR activation in depressed myocardial contractility using a specific agonist CL316243 or using β3-AR overexpressed cardiomyocytes. Since it has been previously shown a possible correlation between increased cellular free Zn2+ ([Zn2+]i) and depressed cardiac contractility, we first demonstrated a relation between β3-AR activation and increased [Zn2+]i, parallel to the significant depolarization in mitochondrial membrane potential in rat ventricular cardiomyocytes. Furthermore, the increased [Zn2+]i induced a significant increase in messenger RNA (mRNA) level of β3-AR in cardiomyocytes. Either β3-AR activation or its overexpression could increase cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels, in line with significant changes in nitric oxide (NO)-pathway, including increases in the ratios of pNOS3/NOS3 and pGSK-3β/GSK-3β, and PKG expression level in cardiomyocytes. Although β3-AR activation induced depression in both Na+- and Ca2+-currents, the prolonged action potential (AP) seems to be associated with a marked depression in K+-currents. The β3-AR activation caused a negative inotropic effect on the mechanical activity of the heart, through affecting the cellular Ca2+-handling, including its effect on Ca2+-leakage from sarcoplasmic reticulum (SR). Our cellular level data with β3-AR agonism were supported with the data on high [Zn2+]i and β3-AR protein-level in metabolic syndrome (MetS)-rat heart. Overall, our present data can emphasize the important deleterious effect of β3-AR activation in cardiac remodeling under pathological condition, at least, through a cross-link between β3-AR activation, NO-signaling, and [Zn2+]i pathways. Moreover, it is interesting to note that the recovery in ER-stress markers with β3-AR agonism in hyperglycemic cardiomyocytes is favored. Therefore, how long and to which level the β3-AR agonism would be friend or become foe remains to be mystery, yet.  相似文献   

20.
The effects of estrogen (E(2)), progesterone (P(4)), and E(2) and P(4) (E(2)+P(4)) on uterine, vaginal, and cerebellar nitric oxide synthase (NOS) were examined. Additionally, experiments were done to investigate whether NOS-containing nerves were present in the uterus and vagina and the extent to which vaginal smooth muscle response was dependent on nitric oxide (NO). Cytosolic NOS was determined by the formation of [(14)C]citrulline from [(14)C]arginine, and NOS localization was visualized by immunohistochemistry. Vaginal smooth muscle relaxation was induced by electrical field stimulations (EFS). NOS activity in the uterus was markedly down-regulated in all hormone-treated groups. Vaginal NOS activity was nearly 4-fold higher than the uterine NOS activity and was considerably reduced by E(2) or E(2)+P(4) treatment. In contrast to findings in the uterus, P(4) treatment up-regulated vaginal NOS. Hormone treatment had no significant effect on cerebellar NOS. NOS-containing nerves could be demonstrated in the uterus and vagina by immunohistochemistry. Vaginal smooth muscle responded with relaxation after EFS, which was inhibited by N(G)-nitro-L-arginine. A relatively high vaginal NOS, a down-regulation by E(2), an up-regulation by P(4), and NO-dependent response of vaginal smooth muscle suggest a tissue-specific physiological role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号