首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
B T Eger  S J Benkovic 《Biochemistry》1992,31(38):9227-9236
The minimal kinetic mechanism for misincorporation of a single nucleotide (dATP) into a short DNA primer/template (9/20-mer) by the Klenow fragment of DNA polymerase I [KF(exo+)] has been previously published [Kuchta, R. D., Benkovic, P., & Benkovic, S.J. (1988) Biochemistry 27, 6716-6725]. In this paper are presented refinements to this mechanism. Pre-steady-state measurements of correct nucleotide incorporation (dTTP) in the presence of a single incorrect nucleotide (dATP) with excess KF-(exo+) demonstrated that dATP binds to the KF(exo+)-9/20-mer complex in two steps preceding chemistry. Substitution of (alpha S)dATP for dATP yielded identical two-step binding kinetics, removing nucleotide binding as a cause of the elemental effect on the rate of misincorporation. Pyrophosphate release from the ternary species [KF'(exo+)-9A/20-mer-PPi] was found to occur following a rate-limiting conformational change, with this species partitioning equally to either nucleotide via internal pyrophosphorolysis or to misincorporated product. The rate of 9A/20-mer dissociation from the central ternary complex (KF'-9A/20-mer-PPi) was shown to be negligible relative to exonucleolytic editing. Pyrophosphorolysis of the misincorporated DNA product (9A/20-mer), in conjunction with measurement of the rate of dATP misincorporation, permitted determination of the overall equilibrium constant for dATP misincorporation and provided a value similar to that measured for correct incorporation. A step by step comparison of the polymerization catalyzed by the Klenow fragment for correct and incorrect nucleotide incorporation emphasizes that the major source of the enzyme's replicative fidelity arises from discrimination in the actual chemical step and from increased exonuclease activity on the ternary misincorporated product complex owing to its slower passage through the turnover sequence.  相似文献   

2.
A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity   总被引:6,自引:0,他引:6  
The kinetic parameters governing incorporation of correct and incorrect bases into synthetic DNA duplexes have been investigated for Escherichia coli DNA polymerase I [Klenow fragment (KF)] and for two mutants, Tyr766Ser and Tyr766Phe. Tyr766 is located at the C-terminus of helix O in the DNA-binding cleft of KF. The catalytic efficiency for correct incorporation of dNTP is reduced 5-fold for Tyr766Ser. The catalytic efficiencies of all 12 possible misincorporations have been determined for both KF and Tyr766Ser by using single-turnover kinetic conditions and a form of the enzyme that is devoid of the 3'-5' exonuclease activity because of other single amino acid replacements. Tyr766Ser displays an increased efficiency of misincorporation (a reduction in fidelity) for several of the 12 mismatches. The largest increase in efficiency of misincorporation for Tyr766Ser occurs for the misincorporation of TMP opposite template guanosine, a 44-fold increase. In contrast, the efficiencies of misincorporation of dAMP opposite template A, G, or C are little affected by the mutation. A determination of the kinetic parameters associated with a complete kinetic scheme has been made for Tyr766Ser. The rate of addition of the next correct nucleotide onto a preexisting mismatch is decreased for Tyr766Ser. The fidelity of Tyr766Phe was not substantially different from that of KF for the misincorporations examined, indicating that it is the loss of the phenolic ring of the side chain of Tyr766 that leads to the significant decrease in fidelity. The results indicate that KF actively participates in the reduction of misincorporations during the polymerization event and that Tyr766 plays an important role in maintaining the high fidelity of replication by KF.  相似文献   

3.
Nucleotide incorporation by the herpes simplex virus type 1 DNA polymerase catalytic subunit (pol) is less faithful than for most replicative DNA polymerases, despite the presence of an associated 3'- to 5'-exonuclease (exo) activity. To determine the aspects of fidelity affected by the exo activity, nucleotide incorporation and mismatch extension frequency for purified wild-type and an exo-deficient mutant (D368A) pol were compared using primer/templates that varied at only a single position. For both enzymes, nucleotide discrimination during incorporation occurred predominantly at the level of K(m) for nucleotide and was the major contributor to fidelity. The contribution of the exo activity to reducing the efficiency of formation of half of all possible mispairs was 6-fold or less, and 30-fold when averaged for the formation of all possible mispairs. In steady-state reactions, mismatches imposed a significant kinetic barrier to extension independent of exo activity. However, during processive DNA synthesis in the presence of only three nucleotides, misincorporation and mismatch extension were efficient for both exo-deficient and wild-type pol catalytic subunits, although slower kinetics of mismatch extension by the exo-deficient pol were observed. The UL42 processivity factor decreased the extent of misincorporation by both the wild-type and the exo-deficient pol to similar levels, but mismatch extension by the wild-type pol.UL42 complex was much less efficient than by the mutant pol.UL42. Thus, despite relatively frequent (1 in 300) misincorporation events catalyzed by wild-type herpes simplex virus pol.UL42 holoenzyme, mismatch extension occurs only rarely, prevented in part by the kinetic barrier to extending a mismatch. The kinetic barrier also increases the probability that a mismatched primer terminus will be transferred to the exo site where it can be excised by the associated exo activity and subsequently extended with correct nucleotide.  相似文献   

4.
Gly-952 is a conserved residue in Saccharomyces cerevisiae DNA polymerase alpha (pol alpha) that is strictly required for catalytic activity and for genetic complementation of a pol alpha-deficient yeast strain. This study analyzes the role of Gly-952 by characterizing the biochemical properties of Gly-952 mutants. Analysis of the nucleotide incorporation specificity of pol alpha G952A showed that this mutant incorporates nucleotides with extraordinarily low fidelity. In a steady-state kinetic assay to measure nucleotide misincorporation, pol alpha G952A incorporated incorrect nucleotides more efficiently than correct nucleotides opposite template C, G, and T. The fidelity of the G952A mutant polymerase was highest at template A, where the ratio of incorporation of dCMP to dTMP was as high as 0.37. Correct nucleotide insertion was 500- to 3500-fold lower for G952A than for wild type pol alpha, with up to 22-fold increase in pyrimidine misincorporation. The Km for G952A pol alpha bound to mismatched termini T:T, T:C, C:A, and A:C was 71- to 460-fold lower than to a matched terminus. Furthermore, pol alpha G952A preferentially incorporated pyrimidine instead of dAMP opposite an abasic site, cis-syn cyclobutane di-thymine, or (6-4) di-thymine photoproduct. These data demonstrate that Gly-952 is a critical residue for catalytic efficiency and error prevention in S. cerevisiae pol alpha.  相似文献   

5.
The DNA polymerase beta mutant enzyme, which is altered from glutamic acid to lysine at position 249, exhibits a mutator phenotype in primer extension assays and in the herpes simplex virus-thymidine kinase (HSV-tk) forward mutation assay. The basis for this loss of accuracy was investigated by measurement of misincorporation fidelity in single turnover conditions. For the four misincorporation reactions investigated, the fidelity of the E249K mutant was not significantly different from wild type, implying that the mutator phenotype was not caused by a general inability to distinguish between correct and incorrect bases during the incorporation reaction. However, the discrimination between correct and incorrect substrates by the E249K enzyme occurred less during the conformational change and chemical steps and more during the initial binding step, compared with pol beta wild type. This implies that the E249K mutation alters the kinetic mechanism of nucleotide discrimination without reducing misincorporation fidelity. In a missing base primer extension assay, we observed that the mutant enzyme produced mispairs and extended them. This indicates that the altered fidelity of E249K could be due to loss of discrimination against mispaired primer termini. This was supported by the finding that the E249K enzyme extended a G:A mispair 8-fold more efficiently than wild type and a C:T mispair 4-fold more efficiently. These results demonstrate that an enhanced ability to extend mispairs can produce a mutator phenotype and that the Glu-249 side chain of DNA polymerase beta is critical for mispair extension fidelity.  相似文献   

6.
The kinetics of nucleotide incorporation into 24/36-mer primer/template DNA by purified fetal calf thymus DNA polymerase (pol) delta was examined using steady-state and pre-steady-state kinetics. The role of the pol delta accessory protein, proliferating cell nuclear antigen (PCNA), on DNA replication by pol delta was also examined by kinetic analysis. The steady-state parameter k(cat) was similar for pol delta in the presence and absence of PCNA (0.36 and 0.30 min(-1), respectively); however, the K(m) for dNTP was 20-fold higher in the absence of PCNA (0.067 versus 1.2 microm), decreasing the efficiency of nucleotide insertion. Pre-steady-state bursts of nucleotide incorporation were observed for pol delta in the presence and absence of PCNA (rates of polymerization (k(pol)) of 1260 and 400 min(-1), respectively). The reduction in polymerization rate in the absence of PCNA was also accompanied by a 2-fold decrease in burst amplitude. The steady-state exonuclease rate of pol delta was 0.56 min(-1) (no burst, 10(3)-fold lower than the rate of polymerization). The small phosphorothioate effect of 2 for correct nucleotide incorporation into DNA by pol delta.PCNA indicated that the rate-limiting step in the polymerization cycle occurs prior to phosphodiester bond formation. A K(d)(dNTP) value of 0.93 microm for poldelta.dNTP binding was determined by pre-steady-state kinetics. A 5-fold increase in K(d)(DNA) for the pol delta.DNA complex was measured in the absence of PCNA. We conclude that the major replicative mammalian polymerase, pol delta, exhibits kinetic behavior generally similar to that observed for several prokaryotic model polymerases, particularly a rate-limiting step following product formation in the steady state (dissociation of oligonucleotides) and a rate-limiting step (probably conformational change) preceding phosphodiester bond formation. PCNA appears to affect pol delta replication in this model mainly by decreasing the dissociation of the polymerase from the DNA.  相似文献   

7.
The synthetic DNA polymers, poly(dG-dC), poly(dC), poly(dA-dT), poly(dA) and poly(dT), were treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methyl methanesulfonate (MMS) and UV irradiation. The modified polymers were used as templates to examine the incorporation of non-complementary nucleotides by E. coli DNA polymerase I. Methylation of poly(dG-dC) by MNNG predominantly induced the misincorporation of dTMP, whereas methylation by MMS induced that of dAMP. Treatment of poly(dT) with MNNG caused the misincorporation of dGMP to a considerable extent, but MMS did not enhance the error on poly(dT). The misincorporation of dAMP on poly(dC) and that of dGMP on poly(dA) were also increased by these chemicals. UV irradiation of poly(dT) and poly(dC) induced the error of dGMP and dAMP, respectively. These data on MNNG and MMS in vitro were in fair agreement with the directions of mutation in vivo. But the predominant induction of transitions by UV in vitro did not agree with the UV-induced transversions in E. coli. This inconsistency suggested the participation of other factors than direct mispairing in UV-induced transversion. Modification of DNA polymerase I by MNNG changed the ratio of polymerase to 3' leads to 5' exonuclease activity altering the fidelity of this enzyme, whereas MMS and UV-irradiation did not alter the fidelity of the enzyme.  相似文献   

8.
High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3ʹ-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.  相似文献   

9.
Fiala KA  Abdel-Gawad W  Suo Z 《Biochemistry》2004,43(21):6751-6762
DNA polymerase lambda (Pollambda), a member of the X-family DNA polymerases, possesses an N-terminal BRCT domain, a proline-rich domain, and a C-terminal polymerase beta-like domain (tPollambda). In this paper, we determined a minimal kinetic mechanism and the fidelity of tPollambda using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into a one-nucleotide gapped DNA substrate, 21-19/41-mer (primer-primer/template). Our kinetic studies revealed an incoming nucleotide bound to the enzyme.DNA binary complex at a rate constant of 1.55 x 10(8) M(-1) s(-1) to form a ground-state ternary complex while the nucleotide dissociated from this complex at a rate constant of 300 s(-1). Since DNA dissociation from tPollambda (0.8 s(-1)) was less than 3-fold slower than polymerization, we measured saturation kinetics for all 16 possible nucleotide incorporations under single turnover conditions to eliminate the complication resulting from multiple turnovers. The fidelity of tPollambda was estimated to be in the range of 10(-2)-10(-4) and was sequence-dependent. Surprisingly, the ground-state binding affinity of correct (1.1-2.4 microM) and incorrect nucleotides (1.4-8.4 microM) was very similar while correct nucleotides (3-6 s(-1)) were incorporated much faster than incorrect nucleotides (0.001-0.2 s(-1)). Interestingly, the misincorporation of dGTP opposite a template base thymine (0.2 s(-1)) was more rapid than all other misincorporations, leading to the lowest fidelity (3.2 x 10(-2)) among all mismatched base pairs. Additionally, tPollambda was found to possess weak strand-displacement activity during polymerization. These biochemical properties suggest that Pollambda likely fills short-patched DNA gaps in base excision repair pathways and participates in mammalian nonhomologous end-joining pathways to repair double-stranded DNA breaks.  相似文献   

10.
Human DNA polymerase ι (Polι) is a member of the Y family of DNA polymerases involved in translesion DNA synthesis. Polι is highly unusual in that it possesses a high fidelity on template A, but has an unprecedented low fidelity on template T, preferring to misincorporate a G instead of an A. To understand the mechanisms of nucleotide incorporation opposite different template bases by Polι, we have carried out pre-steady-state kinetic analyses of nucleotide incorporation opposite templates A and T. These analyses have revealed that opposite template A, the correct nucleotide is preferred because it is bound tighter and is incorporated faster than the incorrect nucleotides. Opposite template T, however, the correct and incorrect nucleotides are incorporated at very similar rates, and interestingly, the greater efficiency of G misincorporation relative to A incorporation opposite T arises predominantly from the tighter binding of G. Based on these results, we propose that the incipient base pair is accommodated differently in the active site of Polι dependent upon the template base and that when T is the templating base, Polι accommodates the wobble base pair better than the Watson-Crick base pair.  相似文献   

11.
DNA polymerases delta and epsilon (pol delta and epsilon) are the major replicative polymerases and possess 3'-5' proofreading exonuclease activities that correct errors arising during DNA replication in the yeast Saccharomyces cerevisiae. This study measures the fidelity of the holoenzyme of wild-type pol epsilon, the 3'-5' exonuclease-deficient pol2-4, a +1 frameshift mutator for homonucleotide runs, pol2C1089Y, and pol2C1089Y pol2-4 enzymes using a synthetic 30-mer primer/100-mer template. The nucleotide substitution rate for wild-type pol epsilon was 0.47 x 10(-5) for G:G mismatches, 0.15 x 10(-5) for T:G mismatches, and less than 0.01 x 10(-5) for A:G mismatches. The accuracy for A opposite G was not altered in the exonuclease-deficient pol2-4 pol epsilon; however, G:G and T:G misincorporation rates increased 40- and 73-fold, respectively. The pol2C1089Y pol epsilon mutant also exhibited increased G:G and T:G misincorporation rates, 22- and 10-fold, respectively, whereas A:G misincorporation did not differ from that of wild type. Since the fidelity of the double mutant pol2-4 pol2C1089Y was not greatly decreased, these results suggest that the proofreading 3'-5' exonuclease activity of pol2C1089Y pol epsilon is impaired even though it retains nuclease activity and the mutation is not in the known exonuclease domain.  相似文献   

12.
Nucleotide insertion opposite 8-oxo-7,8-dihydroguanine (8-oxoG) by fetal calf thymus DNA polymerase delta (pol delta) was examined by steady-state and pre-steady-state rapid quench kinetic analyses. In steady-state reactions with the accessory protein proliferating cell nuclear antigen (PCNA), pol delta preferred to incorporate dCTP opposite 8-oxoG with an efficiency of incorporation an order of magnitude lower than incorporation into unmodified DNA (mainly due to an increased K(m)). Pre-steady-state kinetic analysis of incorporation opposite 8-oxoG showed biphasic kinetics for incorporation of either dCTP or dATP, with rates similar to dCTP incorporation opposite G, large phosphorothioate effects (>100), and oligonucleotide dissociation apparently rate-limiting in the steady-state. Although pol delta preferred to incorporate dCTP (14% misincorporation of dATP) the extension past the A:8-oxoG mispair predominated. The presence of PCNA was found to be a more essential factor for nucleotide incorporation opposite 8-oxoG adducts than unmodified DNA, increased pre-steady-state rates of nucleotide incorporation by >2 orders of magnitude, and was essential for nucleotide extension beyond 8-oxoG. pol delta replication fidelity at 8-oxoG depends upon contributions from K(m), K(d)(dNTP), and rates of phosphodiester bond formation, and PCNA is an important accessory protein for incorporation and extension at 8-oxoG adducts.  相似文献   

13.
To assess the contribution to discrimination afforded by base pair hydrogen bonding during DNA replication by the human mitochondrial DNA polymerase, we examined nucleoside mimics lacking hydrogen bond forming capability but retaining the overall steric shape of the natural nucleotide. We employed oligonucleotide templates containing either a deoxyadenosine shape mimic (dQ) or a deoxythymidine shape mimic (dF). Additionally, the nucleoside triphosphate analogs difluorotoluene deoxynucleoside triphosphate, 9-methyl-1-H-imidazo[(4,5)-b]pyridine deoxyribose triphosphate, and 4-methylbenzimidazole deoxyribose triphosphate (dZTP; another dATP shape mimic) were assayed. We used pre-steady state methods to determine the kinetic parameters governing nucleotide incorporation, k(pol) and K(d). In general, the loss of hydrogen bonding potential led to 2-3 kcal/mol reduction in ground state binding free energy, whereas effects on the maximum rate of polymerization were quite variable, ranging from negligible (dATP:dF) to nearly 4 kcal/mol (dZTP:dT). Although we observed only a 46-fold reduction in discrimination when dF was present in the template, there was a complete elimination of discrimination when dQ was present in the template. Our data with dF indicate that hydrogen bonding contributes 2.2 kcal/mol toward the efficiency of incorporation, whereas data with dQ (which may overestimate the effect due to poor steric mimicry) suggest a contribution of up to 6.8 kcal/mol. Taken together, the data suggest that sterics are necessary but not sufficient to achieve optimal efficiency and fidelity for DNA polymerase. Base pair hydrogen bonding contributes at least a third of the energy underlying nucleoside incorporation efficiency and specificity.  相似文献   

14.
Jiang Y  Hong H  Cao H  Wang Y 《Biochemistry》2007,46(44):12757-12763
G[8-5m]T, a guanine-thymine intrastrand cross-link lesion where the C8 of guanine is covalently bonded to the neighboring 3'-thymine through its methyl carbon, was previously shown to form in an aqueous solution of duplex DNA upon exposure to gamma- or X-rays and in calf thymus DNA treated with Fenton reagents. Here, we employed LC-MS/MS and demonstrated for the first time that this lesion could be induced in a dose-dependent manner in human Hela-S3 cells upon exposure to gamma-rays. We further carried out in vitro replication studies on a substrate containing a site-specifically incorporated G[8-5m]T, and our results showed that the Klenow fragment of Escherichia coli DNA polymerase I stopped synthesis mostly after incorporating the correct nucleotide dAMP opposite the 3'-thymine moiety of the lesion. On the other hand, yeast Saccharomyces cerevisiae DNA polymerase eta (pol eta) was able to replicate past the cross-link lesion, but with markedly reduced efficiency in nucleotide incorporation opposite the 5'-guanine of the lesion. Steady-state kinetic analyses for nucleotide incorporation by yeast pol eta showed that the 5'-guanine portion of the lesion also decreased pronouncedly the fidelity of nucleotide incorporation; the insertion of dAMP and dGMP was favored over that of the correct nucleotide, dCMP. The above results support the conclusion that oxidative intrastrand cross-link lesions, if not repaired, can be cytotoxic and mutagenic.  相似文献   

15.
5-Formyluracil (fU) is a major oxidative thymine lesion generated by ionizing radiation and reactive oxygen species. In the present study, we have assessed the influence of fU on DNA replication to elucidate its genotoxic potential. Oligonucleotide templates containing fU at defined sites were replicated in vitro by Escherichia coli DNA polymerase I Klenow fragment deficient in 3'-5'-exonuclease. Gel electrophoretic analysis of the reaction products showed that fU constituted very weak replication blocks to DNA synthesis, suggesting a weak to negligible cytotoxic effect of this lesion. However, primer extension assays with a single dNTP revealed that fU directed incorporation of not only correct dAMP but also incorrect dGMP, although much less efficiently. No incorporation of dCMP and dTMP was observed. When fU was substituted for T in templates, the incorporation efficiency of dAMP (f(A) = V(max)/K(m)) decreased to (1/4) to (1/2), depending on the nearest neighbor base pair, and that of dGMP (f(G)) increased 1.1-5.6-fold. Thus, the increase in the replication error frequency (f(G)/f(A) for fU versus T) was 3.1-14.3-fold. The misincorporation rate of dGMP opposite fU (pK(a) = 8.6) but not T (pK(a) = 10.0) increased with pH (7.2-8.6) of the reaction mixture, indicating the participation of the ionized (or enolate) form of fU in the mispairing with G. The resulting mismatched fU:G primer terminus was more efficiently extended than the T:G terminus (8.2-11.3-fold). These results show that when T is oxidized to fU in DNA, fU promotes both misincorporation of dGMP at this site and subsequent elongation of the mismatched primer, hence potentially mutagenic.  相似文献   

16.
We have quantified the fidelity of polymerization of DNA by human mitochondrial DNA polymerase using synthetic DNA oligonucleotides and recombinant holoenzyme and examining each of the possible 16-base pair combinations. Although the kinetics of incorporation for all correct nucleotides are similar, with an average Kd of 0.8 microM and an average k(pol) of 37 s(-1), the kinetics of misincorporation vary widely. The ground state binding Kd of incorrect bases ranges from a low of 25 microM for a dATP:A mispair to a high of 360 microM for a dCTP:T mispair. Similarly, the rates of incorporation of incorrect bases vary from 0.0031 s(-1) for a dCTP:C mispair to 1.16 s(-1) for a dGTP:T mispair. Due to the variability in the kinetic parameters for misincorporation, the estimates of fidelity range from 1 error in 3563 nucleotides for dGTP:T to 1 error in 2.3 x 10(6) nucleotides for dCTP:C. Interestingly, the discrimination against a dGTP:T mismatch is 16.5 times lower than that of a dTTP:G mismatch due to a tighter Kd for ground state binding and a faster rate of incorporation of the dGTP:T mismatch relative to the dTTP:G mismatch. We calculate an average fidelity of 1 error in 440,000 nucleotides.  相似文献   

17.
S Boiteux  J Laval 《Biochemistry》1982,21(26):6746-6751
Heat treatment of poly(deoxycytidylic acid)-[poly(dC)] induces the formation of dUMP residues, which code for dAMP when replicated by Escherichia coli DNA polymerases I and III. The specificity of dUMP coding properties is indicated by the quantitative relation between the dAMP incorporated and the frequency of dUMP residues in the heat-treated poly(dC). The dAMP incorporation is prevented by preincubation of uracil containing poly(dC) with uracil-DNA glycosylase. The excision of uracil by uracil-DNA glycosylase leads to the formation of apyrimidinic sites (AP sites), which are barely replicated in vitro under physiological conditions. However, the alteration of E. coli DNA polymerase I fidelity of replication by Mn2+ greatly stimulates the replication of AP sites. There is a preferential incorporation of dAMP, as compared to dTMP, opposite the AP sites. The dAMP incorporation is prevented by preincubation of poly(dC) containing AP sites with Micrococcus luteus AP endonuclease B. The results show a close association between DNA repair by base excision and the prevention of mutagenic processes in vitro. Furthermore, since the alteration of DNA polymerase fidelity allows some replication of the noncoding DNA lesion (AP site), this could imply a role in SOS-induced mutagenesis in vivo.  相似文献   

18.
The DNA polymerase from the bacteriophage T4 is part of a multienzyme complex required for the synthesis of DNA. As a first step in understanding the contributions of individual proteins to the dynamic properties of the complex, e.g., turnover, processivity, and fidelity of replication, the minimal kinetic schemes for the polymerase and exonuclease activities of the gene 43 protein have been determined by pre-steady-state kinetic methods and fit by computer simulation. A DNA primer/template (13/20-mer) was used as substrate; duplexes that contained more single-strand DNA resulted in nonproductive binding of the polymerase. The reaction sequence features an ordered addition of 13/20-mer followed by dATP to the T4 enzyme (dissociation constants of 70 nM and 20 microM) followed by rapid conversion (400 s-1) of the T4.13/20-mer.dATP complex to the T4.14/20-mer.PPi product species. A slow step (2 s-1) following PPi release limits a single turnover, although this step is bypassed in multiple incorporations (13/20-mer-->17/20-mer) which occur at rates > 400 s-1. Competition between correct versus incorrect nucleotides relative to the template strand indicates that the dissociation constants for the incorrect nucleotides are at millimolar values, thus providing evidence that the T4 polymerase, like the T7 but unlike the Klenow fragment polymerases, discriminates by factors > 10(3) against misincorporation in the nucleotide binding step. The exonuclease activity of the T4 enzyme requires an activation step, i.e., T4.DNA-->T4.(DNA)*, whose rate constants reflect whether the 3'-terminus of the primer is matched or mismatched; for matched 13/20-mer the constant is 1 s-1, and for mismatched 13T/20-mer, 5 s-1. Evidence is presented from crossover experiments that this step may represent a melting of the terminus of the duplex, which is followed by rapid exonucleolytic cleavage (100s-1). In the presence of the correct dNTP, primer extension is the rate-limiting step rather than a step involving travel of the duplex between separated exonuclease and polymerase sites. Since the rate constant for 13/20-mer or 13T/20-mer dissociation from the enzyme is 6 or 8 s-1 and competes with that for activation, the exonucleolytic editing by the enzyme alone in a single pass is somewhat inefficient (5 s-1/(8 s-1+5 s-1)), ca. 40%. Consequently, a major role for the accessory proteins may be to slow the rate of enzyme.substrate dissociation, thereby increasing overall fidelity and processivity.  相似文献   

19.
20.
An exonuclease-deficient mutant of T7 DNA polymerase was constructed and utilized in a series of kinetic studies on misincorporation and next correct dNTP incorporation. By using a synthetic oligonucleotide template-primer system for which the kinetic pathway for correct incorporation has been solved [Patel, S.S., Wong, I., & Johnson, K. A. (1991) Biochemistry (first of three papers in this issue)], the kinetic parameters for the incorporation of the incorrect triphosphates dATP, dCTP, and dGTP were determined, giving, respectively, kcat/Km values of 91, 23, and 4.3 M-1 s-1 and a discrimination in the polymerization step of 10(5)-10(6). The rates of misincorporation in all cases were linearly dependent on substrate concentration up to 4 mM, beyond which severe inhibition was observed. Competition of correct incorporation versus dCTP revealed an estimated Ki of approximately 6-8 mM, suggesting a corresponding kcat of 0.14s-1. Moderate elemental effects of 19-, 17-, and 34-fold reduction in rates were measured by substituting the alpha-thiotriphosphate analogues for dATP, dCTP, and dGTP, respectively, indicating that the chemistry step is partially rate-limiting. The absence of a burst of incorporation during the first turnover places the rate-limiting step at a triphosphate binding induced conformational change before chemistry. In contrast, the incorporation of the next correct triphosphate, dCTP, on a mismatched DNA substrate was saturable with a Km of 87 microM for dCTP, 4-fold higher than the Kd for the correct incorporation on duplex DNA, and a kcat of 0.025 s-1. A larger elemental effect of 60, however, suggests a rate-limiting chemistry step. The rate of pyrophosphorolysis on a mismatched 3'-end is undetectable, indicating that pyrophosphorolysis does not play a proofreading role in replication. These results show convincingly that the T7 DNA polymerase discriminates against the incorrect triphosphate by an induced-fit conformational change and that, following misincorporation, the enzyme then selects against the resultant mismatched DNA by a slow, rate-limiting chemistry step, thereby allowing sufficient time for the release of the mismatched DNA from the polymerase active site to be followed by exonucleolytic error correction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号