首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: This study examined the effects of intrastriatal administration of ionotropic excitatory amino acid receptor antagonists on biochemical markers of excitatory amino acid transmission in the rat striatum. High-affinity glutamate uptake was measured ex vivo on striatal homogenates 15 min after the local administration of either 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA receptor antagonist, or dl -2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA antagonist, at various doses (10–500 pmol injected). DNQX induced a dose-dependent increase in glutamate uptake rate, related to an increase in the V max of the transport process, whereas no significant change in glutamate uptake was detected after AP5 administration. Similar results were obtained from animals subjected to excitotoxic lesion of striatal neurons by kainate administration 15 days before the injection of DNQX or AP5. In a parallel series of experiments using in vivo microdialysis we showed that DNQX (10−5 M ) in the dialysis probe diminished by ∼30–40% the increases in the concentrations of glutamate and aspartate elicited by l - trans -pyrrolidine-2,4-dicarboxylic acid (1 m M ). These data suggest that presynaptic glutamate transmission in the rat striatum may undergo facilitatory autoregulatory processes involving ionotropic non-NMDA receptors and highlight the view that transporters for glutamate may be potent regulatory sites for glutamatergic transmission.  相似文献   

2.
The treatment of Lemna gibba plants with the weak acids (trimethylacetic acid and butyric acid), used as tools to decrease intracellular pH, induced a hyperpolarization of membrane potential, dependent on the concentration of the undissociated permeant form of the weak acid and on the value of the resting potential. Measurements were carried out both with `high potential' and `low potential' plants and the maximum values af acid induced hyperpolarizations were about 35 and 71 millivolts, respectively. Weak acids influenced also the transient light-dark membrane potential changes, typical for photosynthesizing material, suggesting a dependence of these changes on an acidification of cytoplasm. In the presence of the weak acids, the membrane depolarization induced by the cotransport of alanine and phosphate with protons was reduced; the maximum reduction (about 90%) was obtained with alanine during 2 millimolar trimethylacetic acid perfusion at pH 5. A strong inhibition of the uptake rates (up to 48% for [14C]alanine and 68% for 32P-phosphate) was obtained in the presence of the weak acids, both by decreasing the pH of the medium and by increasing the concentration of the acid. In these experimental conditions, the ATP level and O2 uptake rates did not change significantly. These results constitute good evidence that H+/solute cotransport in Lemna, already known to be dependent on the electrochemical potential difference for protons, is also strongly regulated by the cytoplasmic pH value.  相似文献   

3.
Effects of Free Fatty Acids on Synaptosomal Amino Acid Uptake Systems   总被引:3,自引:11,他引:3  
Abstract: The Na+-dependent synaptosomal uptakes of proline, aspartic acid, glutamic acid, and γ-aminobutyric acid were strongly inhibited by monounsaturated fatty acids. With oleic acid, half-maximal inhibition was observed at about 15 μM. The Na+-independent uptakes of leucine, phenylalanine, histidine, and valine were less sensitive to inhibition by the unsaturated fatty acids. In contrast, the uptakes of all of these amino acids were unaffected by saturated fatty acids. The inhibition of proline uptake (and that of the other Na+-dependent amino acids) by oleic acid was overcome by the addition of serum albumin and the data presented further indicate that the previously reported stimulation of proline uptake by albumin could be related to its fatty acid binding properties.  相似文献   

4.
Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid–peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid “glycine (Gly)” to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer–polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive Earth.  相似文献   

5.
Changes in the levels of amino acids have been implicated as being important in osmoregulation both within and outside the CNS. The present study addressed the question of whether changes in osmolarity affect the extracellular concentration of amino acids in the rat hippocampus and femoral biceps muscle (FBM). Microdialysis probes were implanted in these tissues and perfused with standard physiological saline. Amino acid concentrations in the dialysate were determined with HPLC separation of o-phthaldialdehyde derivatives and fluorescence detection. The osmolarity of the perfusion buffer was gradually decreased by reduction of the concentration of NaCl from 122 to 61 to 0 mM. In other experiments, the osmolarity was increased by elevation of the NaCl level from 122 to 183 to 244 mM or by addition of mannitol. Glutamate, aspartate, gamma-aminobutyrate, and alanine levels in dialysate from the hippocampus increased when the concentration of NaCl was decreased by 61 mM, and they were further elevated when NaCl was omitted. Taurine and phosphoethanolamine (PEA) levels were maximally elevated at the intermediary decrease of NaCl concentration, and glutamine in particular but also methionine and leucine were suppressed by perfusion with hypoosmolar medium. The amino acid response of the FBM differed substantially from that of the hippocampus. The aspartate content increased slightly, and there was a marginal transient increase in PEA level. Perfusion with media containing high concentrations of NaCl induced diminished dialysate levels of taurine, PEA, and glutamate, whereas levels of other amino acids were either unaffected or increased. Mannitol administration via the perfusion fluid led to reduced levels of taurine, PEA, glutamate, and aspartate. In contrast to the effects of high NaCl levels, hyperosmotic mannitol did not induce increases in level of any of the amino acids detected. The results suggest that taurine and PEA are involved in osmoregulation in the mammalian brain. From a quantitative viewpoint, taurine seems to be most important. Transmitter amino acids may also be involved in the maintenance of the volume of neural cells subjected to severe disturbances in osmotic equilibrium.  相似文献   

6.
木聚糖酶氨基酸组成与其最适pH的神经网络模型   总被引:5,自引:1,他引:5  
籍均匀设计(UD)方法,构建了G/11家族木聚糖酶氨基酸组成和最适pH的神经网络(NNs)模型。当学习速率为0.09、动态参数为0.4、Sigmoid参数为0.98,隐含层结点数为10时,该模型对最适pH的拟合和预测平均绝对百分比误差可分别达到3.02%和4.06%,均方根误差均为0.19个pH单位,平均绝对误差分别为0.11和0.19个pH单位。该结果比文献报道的用逐步回归方法好。  相似文献   

7.
Membrane potential (MP) oscillations produced by excitatory amino acids (EAA) have been studied in branching neurons isolated by an enzymatic-mechanical method from the lamprey spinal cord. It was shown that (1) all studied EAA (glutamate, kainate, NMDA, aspartate, and quisqualate) evoke an ion current and a short-term reversible depolarization in studied cells; (2) EAA added to perfusion solution may produce MP oscillations, with kinetic parameters and duration of the oscillation depending on the amino acid used (the most effective are kainate and NMDA, the least effective, quisqualate); (3) oscillations can be irregular (of the type of a synaptic noise or of a long-term plateau of depolarization with action potentials—AP) or regular, with frequency of 0.5–1.5 Hz. Amplitude of both oscillation types depends on MP level, frequency is more steady for each cell and less depends on MP. In 68 out of 128 studied cells, oscillations could be evoked, which indicates that a significant part of lamprey spinal neurons have intrinsic capability for MP oscillations and probably pacemaker properties. The functional role of oscillations can be different. They can take cells out from the profound inhibition state, synchronize activity of rhythm generation neurons and/or be the base for trigger signals (AP firing) sent by locomotor neuronal circuits to trunk muscles.  相似文献   

8.
The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.  相似文献   

9.
Abstract: We evaluated in rats with severe spinal cord compression at T8–9 the influence of methylprednisolone (MP) on lactic acidosis and extracellular amino acids, which may cause secondary, perifocal injuries of the cord. MP (30 mg/kg) was given intravenously 30 min before compression and hourly thereafter (15 mg/kg). Other rats with compression, given saline, served as controls. Samples from the extracellular fluid of one dorsal horn were collected by microdialysis and analyzed by HPLC. Microdialysis was performed for 1.5 h to establish basal levels. Samples were collected for 3 h after compression. MP-treated rats showed a reduction of dialysate lactic acid and arginine levels during the first 1–2 h after trauma. The mean dialysate levels of glutamate in MP-treated rats were lower than those of the controls, but the difference was not statistically significant. MP treatment did not influence dialysate levels of aspartate, glutamine, histidine, glycine, threonine, taurine, alanine, GABA, and tyrosine. Our study shows that MP has several effects, including reduced lactic acid formation, reduced levels of arginine (the substrate for nitric oxide production), and a trend toward decreased extracellular accumulation of the excitotoxic amino acid glutamate. We conclude that MP has the capacity to change the composition of the extracellular edema fluid after trauma to the spinal cord. These changes may counteract free radical formation and may be important mechanisms by which MP exerts its beneficial actions.  相似文献   

10.
The effects of corticostriatal deafferentation (decortication) and destruction of intrinsic neurons (intrastriatal kainate injection) on the extracellular concentration, and veratrine-releasable pools, of endogenous amino acids in the rat striatum were examined using the in vivo brain dialysis technique. Intracellular amino acid content was also determined. Decortication reduced selectively intra- and extracellular levels of glutamate (Glu) and aspartate (Asp). Extracellular changes were more pronounced than those in tissue content. gamma-Aminobutyric acid (GABA), taurine (Tau), and phosphoethanolamine (PEA) levels were not affected, whereas nonneuroactive amino acids were increased at 1 week but not at 1 month post-lesion. The intracellular pool of Glu and Asp was also reduced in kainate-lesioned striata. However, extracellular levels of these compounds were not affected significantly by this treatment. The tissue content of all other amino acids was decreased, the most prominent change being in the concentration of GABA. Extracellular GABA concentration was also reduced dramatically, whereas the concentrations of noneuroactive amino acids were increased to varying degrees. These data suggest that transmitter pools of neuroactive amino acids are an important supply for their extracellular pools. Lesion-induced alterations in nonneuroactive amino acids are discussed with regard to the loss of metabolic pools, glial reactivity, and changes in blood-brain barrier transport. Veratrine induced a massive release of neuroactive amino acids such as Glu, Asp, GABA, and Tau into the extracellular fluid, and a delayed increase in PEA. Extracellular levels of neuroactive amino acids were raised slightly. Decortication reduced, selectively, the amounts of Glu and Asp released by veratrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
To investigate if alterations of the amino acid metabolism may play a more important role in the etiology of diabetic microangiopathy than hitherto recognized, free amino acids in plasma were measured by means of high-performance liquid chromatography (HPLC) in healthy individuals (REF) and patients with insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM). Isoleucine and leucine in IDDM were within normal limits, whereas they were significantly higher in NIDDM (P < 0.01 and P < 0.001, respectively). This was not due to age differences. In order to evaluate the impact of insulin on amino acid metabolism, amino acids were also measured in pregnant women (PREG) undergoing glucose tolerance tests as a screening for pregnancy diabetes and in patients with polycystic ovary syndrome (PCO) undergoing euglycemic insulin clamp tests. Insulin considerably reduced the amino acid concentration. Isoleucine and leucine were particularly depressed. On the whole there was strong covariance between the three branched-chain amino acids, isoleucine, leucine, and valine (P < 0.0001). There was no covariance between amino acid and glucose or HbAlc concentrations, A protein meal strongly stimulated insulin production (+55 mIU/liter), whereas a galactose meal revealed only a minor increase in insulin response (+ 12 mIU/liter) in contrast to a tolerance test with the same amount of glucose (+ 67 mIU/liter). It is concluded that disturbed amino acid metabolism may be a more important causative factor in the etiology of diabetic microangiopathy than hitherto recognized and, in addition, that this may affect the therapeutic approach in both IDDM and NIDDM patients.  相似文献   

13.
Oscillations with a period of approximately 2 min were observedin the membrane potential of Chara and Nitella upon illuminationof dark-treated cells, as well as in the extracellular currentpattern and pH values. A 2-min oscillation in the membrane potentialwas observed when the voltage electrode was placed close tothe border of an alkaline and acid region. Comparison of resultsfrom Chara and Nitella revealed an identical control mechanismfor external pattern stabilization in the effect of light onmembrane potential and conductance. Vibrating probe experimentsindicated that oscillations in the extracellular current occurredonly at the border of the alkaline band. Ion-specific pH micro-electrodesplaced within the alkaline band detected oscillations associatedwith light reactivation of the banding phenomenon. These resultsindicate that the oscillations represent a localized phenomenoninvolving spatially-dependent time-constants. More evidencefor the spatial dependence of time constants is gained fromsingle active acid regions in Nitella. Using this combinationof techniques, we have established that a light-dependent H+transporter is involved in this oscillation. Current-voltagecurves taken during these oscillations and relaxation, afterchanging the light intensity, confirmed this identification. Key words: Oscillation, vibrating probe, pH micro-electrode, time-constant. I/V curve, Chara, Nitella  相似文献   

14.
Mutations in SSY1 and PTR3 were identified in a genetic selection for components required for the proper uptake and compartmentalization of histidine in Saccharomyces cerevisiae. Ssy1p is a unique member of the amino acid permease gene family, and Ptr3p is predicted to be a hydrophilic protein that lacks known functional homologs. Both Ssy1p and Ptr3p have previously been implicated in relaying signals regarding the presence of extracellular amino acids. We have found that ssy1 and ptr3 mutants belong to the same epistasis group; single and ssy1 ptr3 double-mutant strains exhibit indistinguishable phenotypes. Mutations in these genes cause the nitrogen-regulated general amino acid permease gene (GAP1) to be abnormally expressed and block the nonspecific induction of arginase (CAR1) and the peptide transporter (PTR2). ssy1 and ptr3 mutations manifest identical differential effects on the functional expression of multiple specific amino acid transporters. ssy1 and ptr3 mutants have increased vacuolar pools of histidine and arginine and exhibit altered cell growth morphologies accompanied by exaggerated invasive growth. Subcellular fractionation experiments reveal that both Ssy1p and Ptr3p are localized to the plasma membrane (PM). Ssy1p requires the endoplasmic reticulum protein Shr3p, the amino acid permease-specific packaging chaperonin, to reach the PM, whereas Ptr3p does not. These findings suggest that Ssy1p and Ptr3p function in the PM as components of a sensor of extracellular amino acids.  相似文献   

15.
A new model in which the maximum microbial specific growth rate ((mu)(infmax)) is described as a function of pH and temperature is presented. The seven parameters of this model are the three cardinal pH parameters (the pH below which no growth occurs, the pH above which no growth occurs, and the pH at which the (mu)(infmax) is optimal), the three cardinal temperature parameters (the temperature below which no growth occurs, the temperature above which no growth occurs, and the temperature at which the (mu)(infmax) is optimal), and the specific growth rate at the optimum temperature and optimum pH. The model is a combination of the cardinal temperature model with inflection and the cardinal pH model (CPM). The CPM was compared with the models of Wijtzes et al. and Zwietering et al. by using previously published data sets. The models were compared on the basis of the usual criteria (simplicity, biological significance and minimum number of parameters, applicability, quality of fit, minimum structural correlations, and ease of initial parameter estimation), and our results justified the choice of the CPM. Our combined model was constructed by using the hypothesis that the temperature and pH effects on the (mu)(infmax) are independent. An analysis of this new model with an Escherichia coli O157:H7 data set showed that there was a good correspondence between observed and calculated (mu)(infmax) values. The potential and convenience of the model are discussed.  相似文献   

16.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

17.
The effects of free radical generating systems on basal and ischemia/reperfusion-evoked release of amino acids into cortical superfusates was examined in the rat using the cortical cup technique. Xanthine oxidase plus xanthine significantly enhanced GABA levels 358 fold over controls during 20 min of four vessel occlusion. Glutamate and phosphoethanolamine release following reperfusion were also elevated. Prostaglandin synthase plus arachidonic acid significantly enhanced the ischemia-evoked release of all amino acids (aspartate 360 fold; glutamate 433 fold; glycine 6 fold; GABA 689 fold; phosphoethanolamine 69 fold) and increased the pre-ischemic levels of glutamate, glycine and phosphoethanolamine. Administration of H2O2 plus ferrous sulfate significantly elevated both pre-ischemic amino acid release and ischemia-evoked release. A role for free radical generating systems in the development of ischemic injury is supported by the ability of superoxide dismutase plus catalase to reduce ischemia-evoked amino acid efflux into cortical superfusates. Thus, the species of free radical produced, as well as the amount generated, may alter the pattern of amino acid release under both ischemic and non-ischemic conditions.  相似文献   

18.
动态测定烧伤患者血浆及红细胞内游离氨基酸的含量 ,探讨输入外源性氨基酸后对血及红细胞内游离氨基酸的影响。以日立 835— 5 0型氨基酸自动分析仪测定烧伤患者血浆及红细胞内游离氨基酸含量。结果发现烧伤患者血浆总游离氨基酸浓度从伤后到 2 1天均显著降低 (P <0 .0 5~ 0 .0 1) ;赖、苯丙和苯丙 酪氨酸比值显著升高 (P <0 .0 5~ 0 .0 1) ;色、组、精、丙、甘、苏、脯和丝氨酸比值显著降低 (P <0 .0 5~ 0 .0 1) ;缬、亮、异亮、酪、胱和支链氨基酸伤后早期降低。烧伤患者红细胞内总游离氨基酸含量不同程度降低 ,其中 1、3、7天降低显著 (P <0 .0 5~ 0 .0 1) ;红细胞内苯丙和苯丙 酪氨酸比值未见显著性升高 ;色、蛋、精、脯氨酸含量很低或基本未测出。输注复合氨基酸注射液后未能显著改善患者血及红细胞内游离氨基酸含量。结果提示烧伤患者红细胞内游离氨基酸含量的变化趋势与血浆游离氨基酸变化趋势基本一致 ;烧伤后红细胞内苯丙氨酸及苯丙 酪氨酸比值有别于血浆变化。本研究条件下补充外源性氨基酸未能显著改变烧伤患者血浆及红细胞内游离氨基酸的含量  相似文献   

19.
The effects of acetic acid and extracellular pH (pHex) on the intracellular pH (pHi) of nonfermenting, individual Saccharomyces cerevisiae cells were studied by using a new experimental setup comprising a fluorescence microscope and a perfusion system. S. cerevisiae cells grown in brewer’s wort to the stationary phase were stained with fluorescein diacetate and transferred to a perfusion chamber. The extracellular concentration of undissociated acetic acid at various pHex values was controlled by perfusion with 2 g of total acetic acid per liter at pHex 3.5, 4.5, 5.6, and 6.5 through the chamber by using a high-precision pump. The pHi of individual S. cerevisiae cells during perfusion was measured by fluorescence microscopy and ratio imaging. Potential artifacts, such as fading and efflux of fluorescein, could be neglected within the experimental time used. At pHex 6.5, the pHi of individual S. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.035 g/liter, whereas at pHex 3.5, 4.5, and 5.6, the pHi of individual S. cerevisiae cells decreased as the extracellular concentration of undissociated acetic acid increased from 0 to 0.10 g/liter. At concentrations of undissociated acetic acid of more than 0.10 g/liter, the pHi remained constant. The decreases in pHi were dependent on the pHex; i.e., the decreases in pHi at pHex 5.6 and 6.5 were significantly smaller than the decreases in pHi at pHex 3.5 and 4.5.  相似文献   

20.
The etiologic relationship between disturbances in metabolism of amino acids and amines and hepatic coma was investigated by examining the effects of diets containing various mixtures of amino acids on brain amine metabolism in rats with a portacaval shunt, using a method for simultaneous analysis of amino acids and amines. Rats with a portacaval shunt were fed on four different amino acid compositions with increased amounts of various amino acids suspected to be etiologically related to hepatic coma, such as methionine, phenylalanine, tyrosine, and tryptophan. The animals were killed 4 weeks after operation. During the experimental period, these animals did not become comatose, but exhibited various behavioral abnormalities. Marked increase in the plasma and brain levels of the augmented amino acids, especially methionine and tyrosine, were observed in rats with a portacaval shunt. Brain noradrenaline, dopamine, and serotonin levels were significantly decreased when the brain tyrosine level was increased. These results indicate that in rats with a portacaval shunt the dietary levels of amino acids greatly influence the brain levels of both amino acids and transmitter amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号