首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P-glycoprotein (Pgp), the ATP-binding cassette multidrug transporter, exhibits a drug (substrate)-stimulatable ATPase activity, and vanadate (Vi) inhibits this activity by stably trapping the nucleoside diphosphate in the Pgp.ADP.Vi conformation. We recently demonstrated that Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp in the absence of substrate occurs both in the presence of 8-azido-[alpha-(32)P]ATP (following 8-azido-ATP hydrolysis) or 8-azido-[alpha-(32)P]ADP (without hydrolysis) and, the transition state intermediates generated under either condition are functionally indistinguishable. In this study, we compare the effect of substrates on Vi-induced 8-azido-[alpha-(32)P]ADP trapping into Pgp under both non-hydrolysis and hydrolysis conditions. We demonstrate that whereas substrates stimulate the Vi-induced trapping of 8-azido-[alpha-(32)P]ADP under hydrolysis conditions, they strongly inhibit Vi-induced trapping under non-hydrolysis conditions. This inhibition is concentration-dependent, follows first order kinetics, and is effected by drastically decreasing the affinity of nucleoside diphosphate for Pgp during trapping. However, substrates do not affect the binding of nucleoside diphosphate in the absence of Vi, indicating that the substrate-induced conformation exerts its effect at a step distinct from nucleoside diphosphate-binding. Our results demonstrate that during the catalytic cycle of Pgp, although the transition state, Pgp x ADP x P(i) (Vi), can be generated both via the hydrolysis of ATP or by directly providing ADP to the system, in the presence of substrate the reaction is driven in the forward direction, i.e. hydrolysis of ATP. These data suggest that substrate-stimulated ATP hydrolysis by Pgp is a vectorial process.  相似文献   

2.
P-glycoprotein (Pgp) is a transmembrane protein conferring multidrug resistance to cells by extruding a variety of amphipathic cytotoxic agents using energy from ATP hydrolysis. The objective of this study was to understand how substrates affect the catalytic cycle of ATP hydrolysis by Pgp. The ATPase activity of purified and reconstituted recombinant human Pgp was measured using a continuous cycling assay. Pgp hydrolyzes ATP in the absence of drug at a basal rate of 0.5 micromol x min x mg(-1) with a K(m) for ATP of 0.33 mm. This basal rate can be either increased or decreased depending on the Pgp substrate used, without an effect on the K(m) for ATP or 8-azidoATP and K(i) for ADP, suggesting that substrates do not affect nucleotide binding to Pgp. Although inhibitors of Pgp activity, cyclosporin A, its analog PSC833, and rapamycin decrease the rate of ATP hydrolysis with respect to the basal rate, they do not completely inhibit the activity. Therefore, these drugs can be classified as substrates. Vanadate (Vi)-induced trapping of [alpha-(32)P]8-azidoADP was used to probe the effect of substrates on the transition state of the ATP hydrolysis reaction. The K(m) for [alpha-(32)P]8-azidoATP (20 microm) is decreased in the presence of Vi; however, it is not changed by drugs such as verapamil or cyclosporin A. Strikingly, the extent of Vi-induced [alpha-(32)P]8-azidoADP trapping correlates directly with the fold stimulation of ATPase activity at steady state. Furthermore, P(i) exhibits very low affinity for Pgp (K(i) approximately 30 mm for Vi-induced 8-azidoADP trapping). In aggregate, these data demonstrate that the release of Vi trapped [alpha-(32)P]8-azidoADP from Pgp is the rate-limiting step in the steady-state reaction. We suggest that substrates modulate the rate of ATPase activity of Pgp by controlling the rate of dissociation of ADP following ATP hydrolysis and that ADP release is the rate-limiting step in the normal catalytic cycle of Pgp.  相似文献   

3.
The human P-glycoprotein (Pgp, ABCB1) is an ATP-dependent efflux pump for structurally unrelated hydrophobic compounds, conferring simultaneous resistance to and restricting bioavailability of several anticancer and antimicrobial agents. Drug transport by Pgp requires a coordinated communication between its substrate binding/translocating pathway (substrate site) and the nucleotide binding domains (NBDs or ATP sites). In this study, we demonstrate that certain thioxanthene-based Pgp modulators, such as cis-(Z)-flupentixol and its closely related analogues, effectively disrupt molecular cross talk between the substrate, and the ATP, sites without affecting the basic functional aspects of the two domains, such as substrate recognition, binding, and hydrolysis of ATP and dissociation of ADP following ATP hydrolysis. The allosteric modulator cis-(Z)-flupentixol has no effect on [alpha-(32)P]-8-azido-ATP binding to Pgp under nonhydrolytic conditions or on the K(m) for ATP during ATP hydrolysis. Both hydrolysis of ATP and vanadate-induced [alpha-(32)P]-8-azido-ADP trapping (following [alpha-(32)P]-8-azido-ATP breakdown) by Pgp are stimulated by the modulator. However, the ability of Pgp substrates (such as prazosin) to stimulate ATP hydrolysis and facilitate vanadate-induced trapping of [alpha-(32)P]-8-azido-ADP is substantially affected in the presence of cis-(Z)-flupentixol. Substrate recognition by Pgp as determined by [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) binding both in the presence and in the absence of ATP is facilitated by the modulator, whereas substrate dissociation in response to vanadate trapping is considerably affected in its presence. In the Pgp F983A mutant, which is impaired in modulation by cis-(Z)-flupentixol, the modulator has a minimal effect on substrate-stimulated ATP hydrolysis as well as on substrate dissociation coupled to vanadate trapping. Finally, cis-(Z)-flupentixol has no effect on dissociation of [alpha-(32)P]-8-azido-ADP (or ADP) from vanadate-trapped Pgp, which is essential for subsequent rounds of ATP hydrolysis. Taken together, our results demonstrate a distinct mechanism of Pgp modulation that involves allosteric disruption of molecular cross talk between the substrate, and the ATP, sites without any direct interference with their individual functions.  相似文献   

4.
P-glycoprotein (Pgp) is a plasma membrane protein whose overexpression confers multidrug resistance to tumor cells by extruding amphipathic natural product cytotoxic drugs using the energy of ATP. An elucidation of the catalytic cycle of Pgp would help design rational strategies to combat multidrug resistance and to further our understanding of the mechanism of ATP-binding cassette transporters. We have recently reported (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520) that there are two independent ATP hydrolysis events in a single catalytic cycle of Pgp. In this study we exploit the vanadate (Vi)-induced transition state conformation of Pgp (Pgp.ADP.Vi) to address the question of what are the effects of ATP hydrolysis on the nucleotide-binding site. We find that at the end of the first hydrolysis event there is a drastic decrease in the affinity of nucleotide for Pgp coincident with decreased substrate binding. Release of occluded dinucleotide is adequate for the next hydrolysis event to occur but is not sufficient for the recovery of substrate binding. Whereas the two hydrolysis events have different functional outcomes vis à vis the substrate, they show comparable t(12) for both incorporation and release of nucleotide, and the affinities for [alpha-(32)P]8-azido-ATP during Vi-induced trapping are identical. In addition, the incorporation of [alpha-(32)P]8-azido-ADP in two ATP sites during both hydrolysis events is also similar. These data demonstrate that during individual hydrolysis events, the ATP sites are recruited in a random manner, and only one site is utilized at any given time because of the conformational change in the catalytic site that drastically reduces the affinity of the second ATP site for nucleotide binding. In aggregate, these findings provide an explanation for the alternate catalysis of ATP hydrolysis and offer a mechanistic framework to elucidate events at both the substrate- and nucleotide-binding sites in the catalytic cycle of Pgp.  相似文献   

5.
Sauna ZE  Müller M  Peng XH  Ambudkar SV 《Biochemistry》2002,41(47):13989-14000
The human MDR1 (ABCB1) gene product, P-glycoprotein (Pgp), functions as an ATP-dependent efflux pump for a variety of chemotherapeutic drugs. In this study, we assessed the role of conserved glutamate residues in the Walker B domain of the two ATP sites (E556 and E1201, respectively) during the catalytic cycle of human Pgp. The mutant Pgps (E556Q, E556A, E1201Q, E1201A, E556/1201Q, and E556/1201A) were characterized using a vaccinia virus based expression system. Although steady-state ATP hydrolysis and drug transport activities were abrogated in both E556Q and E1201Q mutant Pgps, [alpha-(32)P]-8-azidoADP was trapped in the presence of vanadate (Vi), and the release of trapped [alpha-(32)P]-8-azidoADP occurred to a similar extent as in wild-type Pgp. This indicates that these mutations do not affect either the first hydrolysis event or the ADP release step. Similar results were also obtained when Glu residues were replaced with Ala (E556A and E1201A). Following the first hydrolysis event and release of [alpha-(32)P]-8-azidoADP, both E556Q and E1201Q mutant Pgps failed to undergo another cycle of Vi-induced [alpha-(32)P]-8-azidoADP trapping. Interestingly, the double mutants E556/1201Q and E556/1201A trapped [alpha-(32)P]-8-azidoADP even in the absence of Vi, and the occluded nucleotide was not released after incubation at 37 degrees C for an extended period. In addition, the properties of transition state conformation of the double mutants generated in the absence of Vi were found to be similar to that of the wild-type protein trapped in the presence of Vi (Pgp x [alpha-(32)P]-8-azidoADP xVi). Thus, in contrast to the single mutants, the double mutants appear to be defective in the ADP release step. In aggregate, these data suggest that E556 and E1201 residues in the Walker B domains may not be critical as catalytic carboxylates for the cleavage of the bond between the gamma-P and the beta-P of ATP during hydrolysis but are essential for the second ATP hydrolysis step and completion of the catalytic cycle.  相似文献   

6.
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.  相似文献   

7.
ATP-dependent drug transport by human P-glycoprotein (Pgp, ABCB1) involves a coordinated communication between its drug-binding site (substrate site) and the nucleotide binding/hydrolysis domain (ATP sites). It has been demonstrated that the two ATP sites of Pgp play distinct roles within a single catalytic turnover; whereas ATP binding or/and hydrolysis by one drives substrate translocation and dissociation, the hydrolytic activity of the other resets the transporter for the subsequent cycle (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520; Sauna, Z. E., and Ambudkar, S. V. (2001) J. Biol. Chem. 276, 11653-11661). Trapping of ADP (or 8-azido-ADP) and vanadate (ADP.Vi or 8-azido-ADP.Vi) at the catalytic site, following nucleotide hydrolysis, markedly reduces the affinity of Pgp for its transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP), resulting in dissociation of the latter. Regeneration of the [125I]IAAP site requires an additional round of nucleotide hydrolysis. In this study, we demonstrate that certain thioxanthene-based allosteric modulators, such as cis-(Z)-flupentixol and its closely related analogs, induce regeneration of [125I]IAAP binding to vanadate-trapped (or fluoroaluminate-trapped) Pgp without any further nucleotide hydrolysis. Regeneration was facilitated by dissociation of the trapped nucleotide and vanadate. Once regenerated, the substrate site remains accessible to [125I]IAAP even after removal of the modulator from the medium, suggesting a modulator-induced relaxation of a constrained transition state conformation. Consistent with this, limited trypsin digestion of vanadate-trapped Pgp shows protection by cis-(Z)-flupentixol of two Pgp fragments (approximately 60 kDa) recognizable by a polyclonal antiserum specific for the NH2-terminal half. No regeneration was observed in the Pgp mutant F983A that is impaired in modulation by flupentixols, indicating involvement of the allosteric modulator site in the phenomenon. In summary, the data demonstrate that in the nucleotide-trapped low affinity state of Pgp, the allosteric site remains accessible and responsive to modulation by flupentixol (and its closely related analogs), which can reset the high affinity state for [125I]IAAP binding without any further nucleotide hydrolysis.  相似文献   

8.
Both ATP sites of human P-glycoprotein are essential but not symmetric.   总被引:5,自引:0,他引:5  
Human P-glycoprotein (P-gp) is a cell surface drug efflux pump that contains two nucleotide binding domains (NBDs). Mutations were made in each of the Walker B consensus motifs of the NBDs at positions D555N and D1200N, thought to be involved in Mg(2+) binding. Although the mutant and wild-type P-gps were expressed equivalently at the cell surface and bound the drug analogue [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) comparably, neither of the mutant proteins was able to transport fluorescent substrates nor had detectable basal nor drug-stimulated ATPase activities. The wild-type and D1200N P-gps were labeled comparably with [alpha-(32)P]-8-azido-ATP at a subsaturating concentration of 2.5 microM, whereas labeling of the D555N mutant was severely impaired. Mild trypsin digestion, to cleave the protein into two halves, demonstrated that the N-half of the wild-type and D1200N proteins was labeled preferentially with [alpha-(32)P]-8-azido-ATP. [alpha-(32)P]-8-Azido-ATP labeling at 4 degrees C was inhibited in a concentration-dependent manner by ATP with half-maximal inhibition at approximately 10-20 microM for the P-gp-D1200N mutant and wild-type P-gp. A chimeric protein containing two N-half NBDs was found to be functional for transport and was also asymmetric with respect to [alpha-(32)P]-8-azido-ATP labeling, suggesting that the context of the ATP site rather than its exact sequence is an important determinant for ATP binding. By use of [alpha-(32)P]-8-azido-ATP and vanadate trapping, it was determined that the C-half of wild-type P-gp was labeled preferentially under hydrolysis conditions; however, the N-half was still capable of being labeled with [alpha-(32)P]-8-azido-ATP. Neither mutant was labeled under vanadate trapping conditions, indicating loss of ATP hydrolysis activity in the mutants. In confirmation of the lack of ATP hydrolysis, no inhibition of [(125)I]IAAP labeling was observed in the mutants in the presence of vanadate. Taken together, these data suggest that the two NBDs are asymmetric and intimately linked and that a conformational change in the protein may occur upon ATP hydrolysis. Furthermore, these data are consistent with a model in which binding of ATP to one site affects ATP hydrolysis at the second site.  相似文献   

9.
The kinetic parameters for the hydrolysis by F1 of the photoreactive nucleotide analogue 2-azido-ATP were determined (Vmax, 105 U/mg F1; Km, 250 microM, in the presence of 1.0 mM SO2-3). In the absence of an activating anion, a non-linear relationship in a Lineweaver-Burk plot was found for the hydrolysis of 2-azido-ATP. The 2-azido-analogues of ATP and ADP proved to be good photoaffinity labels causing notable inactivation of the F1-ATPase activity upon irradiation at 360 nm. This inhibition was also used to demonstrate high-affinity binding of these analogues to a catalytic binding site on the F1. High-affinity binding proved to be an Mg2+-requiring process, occurring with both 2-azido-ATP and 2-azido-ADP but hardly or not occurring with 8-azido-AT(D)P. Covalent binding of 2-nitreno-ATP upon irradiation of F1 containing tightly bound [beta-32P]2-azido-ATP results in a proportional inhibition of ATPase activity, extrapolating to 0.92 mol of covalently bound label per mol of F1 needed for the complete inactivation of the enzyme. When the F1 was irradiated in the presence of excess [beta-32P]2-azido-AT(D)P, 3-4 mol of label were bound when the enzyme was fully inactivated. In all cases, all or most of the radioactivity was found on the beta subunits.  相似文献   

10.
Multidrug Resistance Protein 1 (MRP1) transports diverse organic anionic conjugates and confers resistance to cytotoxic xenobiotics. The protein contains two nucleotide binding domains (NBDs) with features characteristic of members of the ATP-binding cassette superfamily and exhibits basal ATPase activity that can be stimulated by certain substrates. It is not known whether the two NBDs of MRP1 are functionally equivalent. To investigate this question, we have used a baculovirus dual expression vector encoding both halves of MRP1 to reconstitute an active transporter and have compared the ability of each NBD to be photoaffinity-labeled with 8-azido-[(32)P]ATP and to trap 8-azido-[(32)P]ADP in the presence of orthovanadate. We found that NBD1 was preferentially labeled with 8-azido-[(32)P]ATP, while trapping of 8-azido-[(32)P]ADP occurred predominantly at NBD2. Although trapping at NBD2 was dependent on co-expression of both halves of MRP1, binding of 8-azido-ATP by NBD1 remained detectable when the NH(2)-proximal half of MRP1 was expressed alone and when NBD1 was expressed as a soluble polypeptide. Mutation of the conserved Walker A lysine 684 or creation of an insertion mutation between Walker A and B motifs eliminated binding by NBD1 and all detectable trapping of 8-azido-ADP at NBD2. Both mutations decreased leukotriene C(4) (LTC(4)) transport by approximately 70%. Mutation of the NBD2 Walker A lysine 1333 eliminated trapping of 8-azido-ADP by NBD2 but, in contrast to the mutations in NBD1, essentially eliminated LTC(4) transport activity without affecting labeling of NBD1 with 8-azido-[(32)P]ATP.  相似文献   

11.
The 70-kDa peroxisomal membrane protein (PMP70) and adrenoleukodystrophy protein (ALDP), half-size ATP-binding cassette transporters, are involved in metabolic transport of long and very long chain fatty acids into peroxisomes. We examined the interaction of peroxisomal ATP-binding cassette transporters with ATP using rat liver peroxisomes. PMP70 was photoaffinity-labeled at similar efficiencies with 8-azido-[alpha-32P]ATP and 8-azido-[gamma-32P]ATP when peroxisomes were incubated with these nucleotides at 37 degrees C in the absence Mg2+ and exposed to UV light without removing unbound nucleotides. The photoaffinity-labeled PMP70 and ALDP were co-immunoprecipitated together with other peroxisomal proteins, which also showed tight ATP binding properties. Addition of Mg2+ reduced the photoaffinity labeling of PMP70 with 8-azido-[gamma-32P]ATP by 70%, whereas it reduced photoaffinity labeling with 8-azido-[alpha-32P]ATP by only 20%. However, two-thirds of nucleotide (probably ADP) was dissociated during removal of unbound nucleotides. These results suggest that ATP binds to PMP70 tightly in the absence of Mg2+, the bound ATP is hydrolyzed to ADP in the presence of Mg2+, and the produced ADP is dissociated from PMP70, which allows ATP hydrolysis turnover. Properties of photoaffinity labeling of ALDP were essentially similar to those of PMP70. Vanadate-induced nucleotide trapping in PMP70 and ALDP was not observed. PMP70 and ALDP were also phosphorylated at a tyrosine residue(s). ATP binding/hydrolysis by and phosphorylation of PMP70 and ALDP are involved in the regulation of fatty acid transport into peroxisomes.  相似文献   

12.
ATP binding to the first and second NBDs (nucleotide-binding domains) of CFTR (cystic fibrosis transmembrane conductance regulator) are bivalent-cation-independent and -dependent steps respectively [Aleksandrov, Aleksandrov, Chang and Riordan (2002) J. Biol. Chem. 277, 15419-15425]. Subsequent to the initial binding, Mg(2+) drives rapid hydrolysis at the second site, while promoting non-exchangeable trapping of the nucleotide at the first site. This occlusion at the first site of functional wild-type CFTR is somewhat similar to that which occurs when the catalytic glutamate residues in both of the hydrolytic sites of P-glycoprotein are mutated, which has been proposed to be the result of dimerization of the two NBDs and represents a transient intermediate formed during ATP hydrolysis [Tombline and Senior (2005) J. Bioenerg. Biomembr. 37, 497-500]. To test the possible relevance of this interpretation to CFTR, we have now characterized the process by which NBD1 occludes [(32)P]N(3)ATP (8-azido-ATP) and [(32)P]N(3)ADP (8-azido-ADP). Only N(3)ATP, but not N(3)ADP, can be bound initially at NBD1 in the absence of Mg(2+). Despite the lack of a requirement for Mg(2+) for ATP binding, retention of the NTP at 37 degrees C was dependent on the cation. However, at reduced temperature (4 degrees C), N(3)ATP remains locked in the binding pocket with virtually no reduction over a 1 h period, even in the absence of Mg(2+). Occlusion occurred identically in a DeltaNBD2 construct, but not in purified recombinant NBD1, indicating that the process is dependent on the influence of regions of CFTR in addition to NBD1, but not NBD2.  相似文献   

13.
UV irradiation of rat liver F1 ATPase, previously exposed to Mg2+ and [beta, gamma-32P]-2-azido-ATP and separated from medium nucleotides, covalently modifies two tyrosine residues in adjacent tryptic peptides of the beta subunit. This results from the occupancy by 2-azido-ATP or 2-azido-ADP of two distinct types of nucleotide binding sites, the catalytic and noncatalytic sites. The two modified peptides are identical to the ones modified by 2-azido-adenine nucleotides in the beef heart F1 ATPase. Both catalytic and noncatalytic sites are labeled when the ATPase is exposed to [beta-32P]-2-azido-ADP in the presence or the absence of 5'-adenylyimidodiphosphate (AMP-PNP), showing that two distinct types of ADP binding sites are present on the liver enzyme. Similar incorporation of 2-azido-adenine nucleotides is obtained when membrane-bound rat liver F1 ATPase is incubated with Mg2+ and [beta, gamma-32P]-2-azido-ATP.  相似文献   

14.
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.  相似文献   

15.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
F Boulay  P Dalbon  P V Vignais 《Biochemistry》1985,24(25):7372-7379
2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky [Knowles, A. F., & Penefsky, H. S. (1972) J. Biol. Chem. 247, 6617-6623] contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of [alpha-32P]-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of [alpha-32P]-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by [alpha-32P]-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound [alpha-32P]-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The photoaffinity analog 2-azido-ADP has been used to investigate the high-affinity binding site(s) for ATP on the chloroplast thylakoid membrane. Photophosphorylation of 2-azido-ADP results in the rapid formation of 2-azido-ATP, which remains tightly bound to the membranes after extensive washing. The kinetic parameters of the tight binding of ATP and of 2-azido-ATP are similar (apparent Km = 1-2 microM; maximum extent = 0.2-0.4 nmol/mg of chlorophyll). Ultraviolet irradiation of washed thylakoid membranes containing tightly bound 2-azido-[gamma-32P]ATP induces covalent incorporation of the label exclusively into the beta subunit of the chloroplast coupling factor one. Previous results have shown that the tight binding site for ADP is also located on the beta subunit of the ATP synthase (Czarnecki, J. J., Abbott, M. S., and Selman, B. R. (1983) Eur. J. Biochem. 136, 19-24). To further characterize the tight binding sites for ADP and ATP, the membrane-bound coupling factor has been covalently modified with either tightly bound 2-azido-[gamma-32P]ATP or tightly bound 2-azido-[beta-32P]ADP. The photolabeled beta subunits have been isolated and subjected to partial proteolytic digestion and SDS-gel electrophoresis. The results of these experiments demonstrate that the tight binding sites for ADP and ATP are located on identical portions of beta subunit polypeptide.  相似文献   

18.
Cai J  Daoud R  Alqawi O  Georges E  Pelletier J  Gros P 《Biochemistry》2002,41(25):8058-8067
Mutations in the MRP gene family member MRP6 cause pseudoxanthoma elasticum (PXE) in humans, a disease affecting elasticity of connective tissues. The normal function of MRP6, including its physiological substrate(s), remains unknown. To address these issues, recombinant rat Mrp6 (rMrp6) was expressed in the methylotrophic yeast Pichia pastoris. The protein was expressed in the membrane fraction as a stable 170 kDa protein. Its nucleotide binding and hydrolysis properties were investigated using the photoactive ATP analogue 8-azido-[alpha-(32)P]ATP and compared to those of the drug efflux pump MRP1. rMrp6 can bind 8-azido-[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion. Co(2+), Mn(2+), and Ni(2+) can also support 8-azido-[alpha-(32)P]ATP binding by rMrp6 while Ca(2+), Cd(2+), and Zn(2+) cannot. Under hydrolysis conditions (at 37 degrees C), the phosphate analogue beryllium fluoride (BeF(x)()) can stimulate trapping of the 8-azido-[alpha-(32)P]adenosine nucleotide in rMrp6 (and in MRP1) in a divalent cation-dependent and temperature-sensitive fashion. This suggests active ATPase activity, followed by trapping and photo-cross-linking of the 8-azido-[alpha-(32)P]ADP to the protein. By contrast to MRP1, orthovanadate-stimulated nucleotide trapping in rMrp6 does not occur in the presence of Mg(2+) but can be detected with Ni(2+) ions, suggesting structural and/or functional differences between the two proteins. The rMrp6 protein can be specifically photolabeled by a fluorescent photoactive drug analogue, [(125)I]-IAARh123, with characteristics similar to those previously reported for MRP1 (1), and this photolabeling of rMrp6 can be modulated by several structurally unrelated compounds. The P. pastoris expression system has allowed demonstration of ATP binding and ATP hydrolysis by rMrp6. In addition to providing large amounts of active protein for detailed biochemical studies, this system should also prove useful to identify potential rMrp6 substrates in [(125)I]-IAARh123 photolabeling competition studies, as well as to study the molecular basis of PXE mutations, which are most often found in the NBD2 of MRP6.  相似文献   

19.
Carrier I  Julien M  Gros P 《Biochemistry》2003,42(44):12875-12885
In the nucleotide-binding domains (NBDs) of ABC transporters, such as mouse Mdr3 P-glycoprotein (P-gp), an invariant carboxylate residue (E552 in NBD1; E1197 in NBD2) immediately follows the Walker B motif (hyd(4)DE/D). Removal of the negative charge in mutants E552Q and E1197Q abolishes drug-stimulated ATPase activity measured by P(i) release. Surprisingly, drug-stimulated trapping of 8-azido-[alpha-(32)P]ATP is still observed in the mutants in both the presence and absence of the transition-state analogue vanadate (V(i)), and ADP can be recovered from the trapped enzymes. The E552Q and E1197Q mutants show characteristics similar to those of the wild-type (WT) enzyme with respect to 8-azido-[alpha-(32)P]ATP binding and 8-azido-[alpha-(32)P]nucleotide trapping, with the latter being both Mg(2+) and temperature dependent. Importantly, drug-stimulated nucleotide trapping in E552Q is stimulated by V(i) and resembles the WT enzyme, while it is almost completely V(i) insensitive in E1197Q. Similar nucleotide trapping properties are observed when aluminum fluoride or beryllium fluoride is used as an alternate transition-state analogue. Partial proteolytic cleavage of photolabeled enzymes indicates that, in the absence of V(i), nucleotide trapping occurs exclusively at the mutant NBD, whereas in the presence of V(i), nucleotide trapping occurs at both NBDs. Together, these results suggest that there is single-site turnover occurring in the E552Q and E1197Q mutants and that ADP release from the mutant site, or another catalytic step, is impaired in these mutants. Furthermore, our results support a model in which the two NBDs of P-gp are not functionally equivalent.  相似文献   

20.
Multidrug resistance protein (MRP1) utilizes two non-equivalent nucleotide-binding domains (NBDs) to bind and hydrolyze ATP. ATP hydrolysis by either one or both NBDs is essential to drive transport of solute. Mutations of either NBD1 or NBD2 reduce solute transport, but do not abolish it completely. How events at these two domains are coordinated during the transport cycle have not been fully elucidated. Earlier reports (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) indicate that intact ATP is observed bound at NBD1, whereas trapping of the ATP hydrolysis product, ADP, occurs predominantly at NBD2 and that trapping of ADP at NBD2 enhances ATP binding at NBD1 severalfold. This suggested transmission of a positive allosteric interaction from NBD2 to NBD1. To assess whether ATP binding at NBD1 can enhance the trapping of ADP at NBD2, photoaffinity labeling experiments with [alpha-(32)P]8-N(3)ADP were performed and revealed that when presented with this compound labeling of MRP1 occurred at both NBDs. However, upon addition of ATP, this labeling was enhanced 4-fold mainly at NBD2. Furthermore, the nonhydrolyzable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP), bound preferentially to NBD1, but upon addition of a low concentration of 8-N(3)ATP, the binding at NBD2 increased severalfold. This suggested that the positive allosteric stimulation from NBD1 actually involves an increase in ATP binding at NBD2 and hydrolysis there leading to the trapping of ADP. Mutations of Walker A or B motifs in either NBD greatly reduced their ability to be labeled by [alpha-(32)P]8-N(3)ADP as well as by either [alpha-(32)P]- or [gamma-(32)P]8-N(3)ATP (Hou et al. (2000), see above). These mutations also strongly diminished the enhancement by ATP of [alpha-(32)P]8-N(3)ADP labeling and the transport activity of the protein. Taken together, these results demonstrate directly that events at NBD1 positively influence those at NBD2. The interactions between the two asymmetric NBDs of MRP1 protein may enhance the catalytic efficiency of the MRP1 protein and hence of its ATP-dependent transport of conjugated anions out of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号