共查询到20条相似文献,搜索用时 15 毫秒
1.
fringe encodes a glycosyltransferase that modulates the ability of the Notch receptor to be activated by its ligands. We describe studies of fringe function during early stages of Drosophila oogenesis. Animals mutant for hypomorphic alleles of fringe contain follicles with an incorrect number of germline cells, which are separated by abnormally long and disorganized stalks. Analysis of clones of somatic cells mutant for a null allele of fringe localizes the requirement for fringe in follicle formation to the polar cells, and demonstrates that fringe is required for polar cell fate. Clones of cells mutant for Notch also lack polar cells and the requirement for Notch in follicle formation appears to map to the polar cells. Ectopic expression of fringe or of an activated form of Notch can generate an extra polar cell. Our results indicate that fringe plays a key role in positioning Notch activation during early oogenesis, and establish a function for the polar cells in separating germline cysts into individual follicles. 相似文献
2.
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior–posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis. 相似文献
3.
Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them, and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry during Drosophila development can thus be traced back to the specification of the polar cells during early oogenesis. 相似文献
4.
Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila 总被引:16,自引:0,他引:16
Oogenesis in Drosophila involves specification of both germ cells and the surrounding somatic follicle cells, as well as the determination of oocyte polarity. We found that two neurogenic genes, Notch and Delta, are required in oogenesis. These genes encode membrane proteins with epidermal growth factor repeats and are essential in the decision of an embryonic ectodermal cell to take on the fate of neuroblast or epidermoblast. In oogenesis, mutation in either gene leads to an excess of posterior follicle cells, a cell fate change reminiscent of the hyperplasia of neuroblasts seen in neurogenic mutant embryos. Furthermore, the Notch mutation in somatic cells causes mislocalization of bicoid in the oocyte. These results suggest that the neurogenic genes Notch and Delta are involved in both follicle cell development and the establishment of anterior-posterior polarity in the oocyte. 相似文献
5.
6.
Extensive programmed cell death occurs in the female germline of many species ranging from C. elegans to humans. One purpose for germline apoptosis is to remove defective cells unable to develop into fertile eggs. In addition, recent work suggests that the death of specific germline cells may also play a vital role by providing essential nutrients to the surviving oocytes. In Drosophila, the genetic control of germline apoptosis and the proteins that carry out the death sentences are beginning to emerge from studies of female sterile mutations. These studies suggest that the morphological changes that occur during the late stages of Drosophila oogenesis may be initiated and driven by a modified form of programmed cell death. 相似文献
7.
8.
9.
Nezis IP Stravopodis DJ Papassideri I Robert-Nicoud M Margaritis LH 《European journal of cell biology》2000,79(9):610-620
In the present study we demonstrate the existence of two apoptotic patterns in Drosophila nurse cells during oogenesis. One is developmentally regulated and normally occurs at stage 12 and the other is stage-specific and is sporadically observed at stages 7 and 8 of abnormally developed follicles. The apoptotic manifestation of the first pattern begins at stage 11 and is marked by a perinuclear rearrangement of the actin cytoskeleton and the development of extensive lobes and engulfments of the nurse cell nuclei located proximal to the oocyte. Consequently, at late stage 12 (12C), half of the nurse cell nuclei exhibit condensed chromatin, while at late stage 13 all the nuclei have fragmented DNA, as it is clearly shown by TUNEL assay. Finally, the apoptotic vesicles that are formed during stage 13, are phagocytosed by the neighboring follicle cells and at stage 14 the nurse cell nuclear remnants can be easily detected within the adjacent follicle cell phagosomes. In the second sporadic apoptotic pattern, all the nurse cell nuclei are highly condensed with fragmented DNA, accompanied by a completely disorganized actin cytoskeleton. When we induced apoptosis in Drosophila follicles through an etoposide and staurosporine in vitro treatment, we observed a similar pattern of stage-specific cell death at stages 7 and 8. These observations suggest a possible protective mechanism throughout Drosophila oogenesis that results in apoptosis of abnormal, damaged or spontaneously mutated follicles before they reach maturity. 相似文献
10.
The planar polarity pathway promotes coordinated cell migration during Drosophila oogenesis 总被引:1,自引:0,他引:1
Cell migration is fundamental in both animal morphogenesis and disease. The migration of individual cells is relatively well-studied; however, in vivo, cells often remain joined by cell-cell junctions and migrate in cohesive groups. How such groups of cells coordinate their migration is poorly understood. The planar polarity pathway coordinates the polarity of non-migrating cells in epithelial sheets and is required for cell rearrangements during vertebrate morphogenesis. It is therefore a good candidate to play a role in the collective migration of groups of cells. Drosophila border cell migration is a well-characterised and genetically tractable model of collective cell migration, during which a group of about six to ten epithelial cells detaches from the anterior end of the developing egg chamber and migrates invasively towards the oocyte. We find that the planar polarity pathway promotes this invasive migration, acting both in the migrating cells themselves and in the non-migratory polar follicle cells that they carry along. Disruption of planar polarity signalling causes abnormalities in actin-rich processes on the cell surface and leads to less-efficient migration. This is apparently due, in part, to a loss of regulation of Rho GTPase activity by the planar polarity receptor Frizzled, which itself becomes localised to the migratory edge of the border cells. We conclude that, during collective cell migration, the planar polarity pathway can mediate communication between motile and non-motile cells, which enhances the efficiency of migration via the modulation of actin dynamics. 相似文献
11.
12.
13.
Cortactin modulates cell migration and ring canal morphogenesis during Drosophila oogenesis 总被引:3,自引:0,他引:3
Cortactin is a Src substrate that interacts with F-actin and can stimulate actin polymerization by direct interaction with the Arp2/3 complex. We have isolated complete loss-of-function mutants of the single Drosophila cortactin gene. Mutants are viable and fertile, showing that cortactin is not an essential gene. However, cortactin mutants show distinct defects during oogenesis. During oogenesis, Cortactin protein is enriched at the F-actin rich ring canals in the germ line, and in migrating border cells. In cortactin mutants, the ring canals are smaller than normal. A similar phenotype has been observed in Src64 mutants and in mutants for genes encoding Arp2/3 complex components, supporting that these protein products act together to control specific processes in vivo. Cortactin mutants also show impaired border cell migration. This invasive cell migration is guided by Drosophila EGFR and PDGF/VEGF receptor (PVR). We find that accumulation of Cortactin protein is positively regulated by PVR. Also, overexpression of Cortactin can by itself induce F-actin accumulation and ectopic filopodia formation in epithelial cells. We present evidence that Cortactin is one of the factors acting downstream of PVR and Src to stimulate F-actin accumulation. Cortactin is a minor contributor in this regulation, consistent with the cortactin gene not being essential for development. 相似文献
14.
Ezrin, Radixin and Moesin (ERM) proteins are thought to constitute a bridge between the actin cytoskeleton and the plasma membrane (PM). Here we report a genetic analysis of Dmoesin, the sole member of the ERM family in Drosophila. We show that Dmoesin is required during oogenesis for anchoring microfilaments to the oocyte cortex. Alteration of the actin cytoskeleton resulting from Dmoesin mutations impairs the localization of maternal determinants, thus disrupting antero-posterior polarity. This study also demonstrates the requirement of Dmoesin for the specific organization of cortical microfilaments in nurse cells and, consequently, mutations in Dmoesin produce severe defects in cell shape. 相似文献
15.
In Drosophila the posterior positioning of the oocyte within the germline cluster defines the initial asymmetry during oogenesis. From this early event, specification of both body axes is controlled through reciprocal signaling between germline and soma. Here it is shown that the mutation hold up (hup) affects oocyte positioning in the egg chamber, follicle cell fate and localization of different markers in the growing oocytes. This occurs not only in dicephalic egg chambers, but also in oocytes normally located at the posterior. Generation of mosaic egg chambers indicates that hup has to be at least somatically required. Possible interactions of hup with Egfr, the Drosophila epidermal growth factor receptor homolog, have been investigated in homozygous double mutants constructed by recombination. Stronger new ovarian phenotypes have been obtained, the most striking being accumulation of follicle cells in multiple layers posteriorly to the oocyte. It is proposed that the hup gene product is a component of the molecular machinery that leads to the establishment of polarity both in follicle cell layer and oocyte, acting in the same or in a parallel pathway of Egfr. 相似文献
16.
Keller Larkin M Deng WM Holder K Tworoger M Clegg N Ruohola-Baker H 《Development genes and evolution》1999,209(5):301-311
During Drosophila oogenesis the body axes are determined by signaling between the oocyte and the somatic follicle cells that surround the egg
chamber. A key event in the establishment of oocyte anterior-posterior polarity is the differential patterning of the follicle
cell epithelium along the anterior-posterior axis. Both the Notch and epithelial growth factor (EGF) receptor pathways are
required for this patterning. To understand how these pathways act in the process we have analyzed markers for anterior and
posterior follicle cells accompanying constitutive activation of the EGF receptor, loss of Notch function, and ectopic expression
of Delta. We find that a constitutively active EGF receptor can induce posterior fate in anterior but not in lateral follicle
cells, showing that the EGF receptor pathway can act only on predetermined terminal cells. Furthermore, Notch function is
required at both termini for appropriate expression of anterior and posterior markers, while loss of both the EGF receptor
and Notch pathways mimic the Notch loss-of-function phenotype. Ectopic expression of the Notch ligand, Delta, disturbs EGF
receptor dependent posterior follicle cell differentiation and anterior-posterior polarity of the oocyte. Our data are consistent
with a model in which the Notch pathway is required for early follicle cell differentiation at both termini, but is then repressed
at the posterior for proper determination of the posterior follicle cells by the EGF receptor pathway.
Received: 5 November 1998 / Accepted: 14 December 1998 相似文献
17.
18.
Exit from the cell cycle is essential for cells to initiate a terminal differentiation program during development, but what controls this transition is incompletely understood. In this paper, we demonstrate a regulatory link between mitochondrial fission activity and cell cycle exit in follicle cell layer development during Drosophila melanogaster oogenesis. Posterior-localized clonal cells in the follicle cell layer of developing ovarioles with down-regulated expression of the major mitochondrial fission protein DRP1 had mitochondrial elements extensively fused instead of being dispersed. These cells did not exit the cell cycle. Instead, they excessively proliferated, failed to activate Notch for differentiation, and exhibited downstream developmental defects. Reintroduction of mitochondrial fission activity or inhibition of the mitochondrial fusion protein Marf-1 in posterior-localized DRP1-null clones reversed the block in Notch-dependent differentiation. When DRP1-driven mitochondrial fission activity was unopposed by fusion activity in Marf-1-depleted clones, premature cell differentiation of follicle cells occurred in mitotic stages. Thus, DRP1-dependent mitochondrial fission activity is a novel regulator of the onset of follicle cell differentiation during Drosophila oogenesis. 相似文献
19.
20.
Exit from the cell cycle requires the downregulation of Cyclin/Cdk activity. In the ovary of Drosophila, Encore activity is necessary in the germline to exit the division program after four mitotic divisions. We find that in encore mutant germaria, Cyclin A persists longer than in wild type. In addition, Cyclin E expression is not downregulated after the fourth mitosis and accumulates in a polyubiquitinated form. Mutations in genes coding for components of the SCF pathway such as cul1, UbcD2 and effete enhance the extra division phenotype of encore. We show that Encore physically interacts with the proteasome, Cul1 and Cyclin E. The association of Cul1, phosphorylated Cyclin E and the proteasome 19S-RP subunit S1 with the fusome is affected in encore mutant germaria. We propose that in encore mutant germaria the proteolysis machinery is less efficient and, in addition, reduced association of Cul1 and S1 with the fusome may compromise Cyclin E destruction and consequently promote an extra round of mitosis. 相似文献