首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affibody molecules present a new class of affinity proteins, which utilizes a scaffold based on a 58-amino acid domain derived from protein A. The small (7 kDa) Affibody molecule can be selected to bind to cell-surface targets with high affinity. An Affibody molecule (ZHER2:342) with a dissociation constant (Kd) of 22 pM for binding to the HER2 receptor has been reported earlier. Preclinical and pilot clinical studies have demonstrated the utility of radiolabeled ZHER2:342 in imaging of HER2-expressing tumors. The small size and cysteine-free structure of Affibody molecules enable complete peptide synthesis and direct incorporation of radionuclide chelators. The goal of this study was to evaluate if incorporation of the natural peptide sequences cysteine-diglycine (CGG) and cysteine-triglycine (CGGG) sequences would enable labeling of Affibody molecules with 99mTc. In a model monomeric form, the chelating sequences were incorporated by peptide synthesis. The HER2-binding affinity was 280 and 250 pM for CGG-ZHER2:342 and CGGG-ZHER2:342, respectively. Conjugates were directly labeled with 99mTc with 90% efficiency and preserved the capacity to bind specifically to HER2-expressing cells. The biodistribution in normal mice showed a rapid clearance from the blood and the majority of organs (except kidneys). In the mice bearing SKOV-3 xenografts, tumor uptake of 99mTc-CGG-ZHER2:342 was HER2-specific and a tumor-to-blood ratio of 9.2 was obtained at 6 h postinjection. Gamma-camera imaging with 99mTc-CGG-ZHER2:342 clearly visualized tumors at 6 h postinjection. The results show that the use of a cysteine-based chelator enables 99mTc-labeling of Affibody molecules for imaging.  相似文献   

2.
Affibody molecules have received significant attention in the fields of molecular imaging and drug development. However, Affibody scaffolds display an extremely high renal uptake, especially when modified with chelators and then labeled with radiometals. This unfavorable property may impact their use as radiotherapeutic agents in general and as imaging probes for the detection of tumors adjacent to kidneys in particular. Herein, we present a simple and generalizable strategy for reducing the renal uptake of Affibody molecules while maintaining their tumor uptake. Human serum albumin (HSA) was consecutively modified by 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS ester) and the bifunctional cross-linker sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate (Sulfo-SMCC). The HER2 Affibody analogue, Ac-Cys-Z(HER2:342), was covalently conjugated with HSA, and the resulting bioconjugate DOTA-HSA-Z(HER2:342) was further radiolabeled with ??Cu and 111In and evaluated in vitro and in vivo. Radiolabeled DOTA-HSA-Z(HER2:342) conjugates displayed a significant and specific cell uptake into SKOV3 cell cultures. Positron emission tomography (PET) investigations using ??Cu-DOTA-HSA-Z(HER2:342) were performed in SKOV3 tumor-bearing nude mice. High tumor uptake values (>14% ID/g at 24 and 48 h) and high liver accumulations but low kidney accumulations were observed. Biodistribution studies and single-photon emission computed tomography (SPECT) investigations using 111In-DOTA-HSA-Z(HER2:342) validated these results. At 24 h post injection, the biodistribution data revealed high tumor (16.26% ID/g) and liver (14.11% ID/g) uptake but relatively low kidney uptake (6.06% ID/g). Blocking studies with coinjected, nonlabeled Ac-Cys-Z(HER2:342) confirmed the in vivo specificity of HER2. Radiolabeled DOTA-HSA-Z(HER2:342) Affibody conjugates are promising SPECT and PET-type probes for the imaging of HER2 positive cancer. More importantly, DOTA-HSA-Z(HER2:342) is suitable for labeling with therapeutic radionuclides (e.g., ??Y or 1??Lu) for treatment studies. The approach of using HSA to optimize the pharmacokinetics and biodistribution profile of Affibodies may be extended to the design of many other targeting molecules.  相似文献   

3.
Affibody molecules are a new class of small targeting proteins based on a common three-helix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule Z HER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A' DTPA was site-specifically conjugated at the C-terminal cysteine of Z HER2:2395-C, a variant of Z HER2:342, providing a homogeneous conjugate with a dissociation constant of 56 pM. The yield of labeling with (111)In was >99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of (111)In-CHX-A' DTPA-Z 2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all nonspecific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of (111)In-CHX-A' DTPA-Z 2395-C was 17.3 +/- 4.8% IA/g and the tumor-to-blood ratio 86 +/- 46 (4 h postinjection). HER2-expressing xenografts were clearly visualized 1 h postinjection. In conclusion, coupling of maleimido-CHX-A' DTPA to cysteine-containing Affibody molecules provides a well-defined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo.  相似文献   

4.
Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.  相似文献   

5.
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.  相似文献   

6.
Affibody molecules are a class of small (ca. 7 kDa) robust scaffold proteins suitable for radionuclide molecular imaging of therapeutic targets in vivo. A hexahistidine tag at the N-terminus streamlines development of new imaging probes by enabling facile purification using immobilized metal ion affinity chromatography (IMAC), as well as convenient [??(m)Tc(CO)?](+)-labeling. However, previous studies in mice have demonstrated that Affibody molecules labeled by this method yield higher liver accumulation of radioactivity, compared to the same tracer lacking the hexahistidine tag and labeled by an alternative method. Two variants of the HER2-binding Affibody molecule Z(HER)?(:)??? were made in an attempt to create a tagged tracer that could be purified by immobilized metal affinity chromatography, yet would not result in anomalous hepatic radioactivity accumulation following labeling with [??(m)Tc(CO)?](+). In one construct, the hexahistidine tag was moved to the C-terminus. In the other construct, every second histidine residue in the hexahistidine tag was replaced by the more hydrophilic glutamate, resulting in a HEHEHE-tag. Both variants, denoted Z(HER)?(:)???-H? and (HE)?-Z(HER)?(:)???, respectively, could be efficiently purified using IMAC and stably labeled with [??(m)Tc(CO)?](+) and were subsequently compared with the parental H?-Z(HER)?(:)??? having an N-terminal hexahistidine tag. All three variants were demonstrated to specifically bind to HER2-expressing cells in vitro. The hepatic accumulation of radioactivity in a murine model was 2-fold lower with [??(m)Tc(CO)?](+)-Z(HER2:342)-H? compared to [??(m)Tc(CO)?](+)-H?-Z(HER)?(:)???, and more than 10-fold lower with [??(m)Tc(CO)?](+)-(HE)?-Z(HER)?(:)???. These differences translated into appreciably superior tumor-to-liver ratio for [??(m)Tc(CO)?](+)-(HE)?-Z(HER)?(:)??? compared to the alternative conjugates. This information might be useful for development of other scaffold-based molecular imaging probes.  相似文献   

7.
Radionuclide molecular imaging has the potential to improve cancer treatment by selection of patients for targeted therapy. Affibody molecules are a class of small (7 kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. The NOTA chelator forms stable complexes with a number of radionuclides suitable for SPECT or PET imaging. A maleimidoethylmonoamide NOTA (MMA-NOTA) has been prepared for site-specific labeling of Affibody molecules having a unique C-terminal cysteine. Coupling of the MMA-NOTA to the anti-HER2 Affibody molecule Z(HER2:2395) resulted in a conjugate with an affinity (dissociation constant) to HER2 of 72 pM. Labeling of [MMA-NOTA-Cys(61)]-Z(HER2:2395) with (111)In gave a yield of >95% after 20 min at 60 °C. In vitro cell tests demonstrated specific binding of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) to HER2-expressing cell lines. In mice bearing prostate cancer DU-145 xenografts, the tumor uptake of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) was 8.2 ± 0.9% IA/g and the tumor-to-blood ratio was 31 ± 1 (4 h postinjection). DU-145 xenografts were clearly visualized by a gamma camera. Direct in vivo comparison of [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) and [(111)In-MMA-DOTA-Cys(61)]-Z(HER2:2395) demonstrated that both conjugates provided equal radioactivity uptake in tumors, but the tumor-to-organ ratios were better for [(111)In-MMA-NOTA-Cys(61)]-Z(HER2:2395) due to more efficient clearance from normal tissues. In conclusion, coupling of MMA-NOTA to a cysteine-containing Affibody molecule resulted in a site-specifically labeled conjugate, which retains high affinity, can be efficiently labeled, and allows for high-contrast imaging.  相似文献   

8.
Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.  相似文献   

9.
Affibody molecules are a class of small (7 kDa) non-immunoglobulin scaffold-based affinity proteins, which have demonstrated substantial potential as probes for radionuclide molecular imaging. The use of positron emission tomography (PET) would further increase the resolution and quantification accuracy of Affibody-based imaging. The rapid in vivo kinetics of Affibody molecules permit the use of the generator-produced radionuclide 68Ga (T1/2 = 67.6 min). Earlier studies have demonstrated that the chemical nature of chelators has a substantial influence on the biodistribution properties of Affibody molecules. To determine an optimal labeling approach, the macrocyclic chelators 1,4,7,10-tetraazacylododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N-triacetic acid (NOTA) and 1-(1,3-carboxypropyl)-1,4,7- triazacyclononane-4,7-diacetic acid (NODAGA) were conjugated to the N-terminus of the synthetic Affibody molecule ZHER2:S1 targeting HER2. Affibody molecules were labeled with 68Ga, and their binding specificity and cellular processing were evaluated. The biodistribution of 68Ga-DOTA-ZHER2:S1, 68Ga-NOTA-ZHER2:S1 and 68Ga-NODAGA-ZHER2:S1, as well as that of their 111In-labeled counterparts, was evaluated in BALB/C nu/nu mice bearing HER2-expressing SKOV3 xenografts. The tumor uptake for 68Ga-DOTA-ZHER2:S1 (17.9±0.7%IA/g) was significantly higher than for both 68Ga-NODAGA-ZHER2:S1 (16.13±0.67%IA/g) and 68Ga-NOTA-ZHER2:S1 (13±3%IA/g) at 2 h after injection. 68Ga-NODAGA-ZHER2:S1 had the highest tumor-to-blood ratio (60±10) in comparison with both 68Ga-DOTA-ZHER2:S1 (28±4) and 68Ga-NOTA-ZHER2:S1 (42±11). The tumor-to-liver ratio was also higher for 68Ga-NODAGA-ZHER2:S1 (7±2) than the DOTA and NOTA conjugates (5.5±0.6 vs.3.3±0.6). The influence of chelator on the biodistribution and targeting properties was less pronounced for 68Ga than for 111In. The results of this study demonstrate that macrocyclic chelators conjugated to the N-terminus have a substantial influence on the biodistribution of HER2-targeting Affibody molecules labeled with 68Ga.This can be utilized to enhance the imaging contrast of PET imaging using Affibody molecules and improve the sensitivity of molecular imaging. The study demonstrated an appreciable difference of chelator influence for 68Ga and 111In.  相似文献   

10.
Affibody molecules represent a novel class of affinity proteins with a high potential as tracers for radionuclide molecular imaging. In this comparative structure–property study, a series of Affibody molecules with the 99mTc-chelators maGGG, maSSS, or maESE attached to the ε-amine of the internally positioned K49 was prepared by peptide synthesis, for comparison to molecules with similar chelators positioned at the N-terminus. The conjugates were labeled with 99mTc and evaluated in vitro and in vivo. It was found that both composition and position of the chelating moiety influence the label stability, biodistribution and targeting properties of HER2-binding Affibody molecules.  相似文献   

11.
Human epidermal growth factor receptor 2 (HER2) contributes to the development of breast cancers and malignancies. On the other hand, engineered affibody Z(HER2:342) that binds to HER2 can be successfully used for both diagnostic purposes and specific ablation of malignant HER2-positive cell lines. In the current study, electrostatics-based prediction was applied for improving Z(HER2:342) binding affinity using computational design. The affibody Z(HER2:342) alone and in complex with HER2 was energetically minimized, solvated in explicit water, and neutralized. After heating and equilibration steps, the system was studied by isothermal-isobaric (NPT) MD simulation. According to trajectories, Z(HER2:342) specifically binds to HER2 through hydrogen bonds and salt bridges. Based on the electrostatic binding contributions, two affinity-matured variants namely V1 (Tyr35Arg) and V2 (Asn6Asp and Met9Glu) were rationally designed. More investigations through MD simulation show that V1 interacts with HER2 receptor more strongly, compared to Z(HER2:342) and V2.  相似文献   

12.
Ren G  Webster JM  Liu Z  Zhang R  Miao Z  Liu H  Gambhir SS  Syud FA  Cheng Z 《Amino acids》2012,43(1):405-413
Molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression has drawn significant attention because of the unique role of the HER2 gene in diagnosis, therapy and prognosis of human breast cancer. In our previous research, a novel cyclic 2-helix small protein, MUT-DS, was discovered as an anti-HER2 Affibody analog with high affinity through rational protein design and engineering. MUT-DS was then evaluated for positron emission tomography (PET) of HER2-positive tumor by labeling with two radionuclides, 68Ga and 18F, with relatively short half-life (t1/2<2 h). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with 64Cu or 111In and evaluated for in vivo targeting of HER2-positive tumor in mice. Design 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated MUT-DS (DOTA-MUT-DS) was chemically synthesized using solid phase peptide synthesizer and I2 oxidation. DOTA-MUT-DS was then radiolabeled with 64Cu or 111In to prepare the HER2 imaging probe (64Cu/111In-DOTA-MUT-DS). Both biodistribution and microPET imaging of the probe were evaluated in nude mice bearing subcutaneous HER2-positive SKOV3 tumors. DOTA-MUT-DS could be successfully synthesized and radiolabeled with 64Cu or 111In. Biodistribution study showed that tumor uptake value of 64Cu or 111In-labeled DOTA-MUT-DS was 4.66±0.38 or 2.17±0.15%ID/g, respectively, in nude mice bearing SKOV3 xenografts (n=3) at 1 h post-injection (p.i.). Tumor-to-blood and tumor-to-muscle ratios for 64Cu-DOTA-MUT-DS were attained to be 3.05 and 3.48 at 1 h p.i., respectively, while for 111In-DOTA-MUT-DS, they were 2.04 and 3.19, respectively. Co-injection of the cold Affibody molecule ZHER2:342 with 64Cu-DOTA-MUT-DS specifically reduced the SKOV3 tumor uptake of the probe by 48%. 111In-DOTA-MUT-DS displayed lower liver uptake at all the time points investigated and higher tumor to blood ratios at 4 and 20 h p.i., when compared with 64Cu-DOTA-MUT-DS. This study demonstrates that the 2-helix protein based probes, 64Cu/111In DOTA-MUT-DS, are promising molecular probes for imaging HER2-positive tumor. Two-helix small protein scaffold holds great promise as a novel and robust platform for imaging and therapy applications.  相似文献   

13.
Human epidermal growth factor receptor type 2 (HER2) is a well-known biomarker that is overexpressed in many breast carcinomas. HER2 expression level is an important factor to optimize the therapeutic strategy and monitor the treatment. We used albumin binding domain-fused HER2-specific Affibody molecules, labeled with Alexa Fluor750 dye, to characterize HER2 expression in vivo. Near-infrared optical imaging studies were carried out using mice with subcutaneous HER2-positive tumors. Animals were divided into groups of five: no treatment and 12 hours and 1 week after treatment of the tumors with the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). The compartmental ligands-receptor model, describing binding kinetics, was used to evaluate HER2 expression from the time sequence of the fluorescence images after the intravenous probe injection. The normalized rate of accumulation of the specific fluorescent biomarkers, estimated from this time sequence, linearly correlates with the conventional ex vivo enzyme-linked immunosorbent assay (ELISA) readings for the same tumor. Such correspondence makes properly arranged fluorescence imaging an excellent candidate for estimating HER2 overexpression in tumors, complementing ELISA and other ex vivo assays. Application of this method to the fluorescence data from HER2-positive xenografts reveals that the 17-DMAG treatment results in downregulation of HER2. Application of the AngioSense 750 probe confirmed the antiangiogenic effect of 17-DMAG found with Affibody-Alexa Fluor 750 conjugate.  相似文献   

14.
Thermosensitive liposomes are attractive vehicles for the delivery and release of drugs to tumors. To improvethe targeting efficacy for breast cancer treatment, an 8.3-kDa HER2-specific Affibody molecule (Z(HER2:342)-Cys) was conjugated to the surface of liposomes. The effects of this modification on physical characteristics and stability of the resulting nanoparticles denoted as "Affisomes" were investigated. Thermosensitive small unilamellar vesicle (SUV) liposomes of (80-100 nm) a diameter consisting of dipalmitoyl phosphatidylcholine (DPPC, Tm 41 degrees C) as the matrix lipid and a maleimide-conjugated pegylated phospholipid (DSPE-MaL-PEG2000) were prepared by probe sonication. Fluorescent probes were incorporated into liposomes for biophysical and/or biochemical analysis and/or triggered-release assays. Affibody was conjugated to these liposomes via its C-terminal cysteine by incubation in the presence of a reducing agent (e.g., tributylphosphine) for 16-20 hours under an argon atmosphere. Lipid-conjugated affibody molecule was visible as an 11.3-kDa band on a 4-12% Bis/Tris gel under reducing conditions. Affibody conjugation yields were approximately 70% at a protein-lipid ratio of 20 microg/mg, with an average number of 200 affibody molecules per Affisome. Affibody conjugation to thermosensitive liposomes did not have any significant effect on the hydrodynamic size distribution of the liposomes. Thermosensitivity of Affisomes was determined by monitoring the release of entrapped calcein (a water-soluble fluorescent probe, lambdaex/em 490/515 nm) as a function of temperature. Calcein was released from Affisomes (thermosensitive liposomes with affibody-Targeted SUV) as well as nontargeted SUV (thermosensitive liposomes without affibody) in a temperature-dependent manner, with optimal leakage (90-100%) at 41 degrees C. In contrast, liposomes prepared from Egg phosphatidyl choline (Egg PC, Tm approximately 0 degrees C) under similar conditions released only 5-10% calcein at 41 degrees C. Affisomes, when stored at room temperature, retained > 90% entrapped calcein up to 7 days. Moreover, incubation of liposomes in phosphate-buffered saline, supplemented with 10% heat-inactivated serum (fetal bovine serum) did not result in a destabilization of liposomes. Therefore, Affisomes present promising, novel drug-delivery candidates for breast cancer targeting.  相似文献   

15.
Aminopeptidase N (APN) is known to play important roles in tumor angiogenesis, tumor cell invasion, and metastasis. Thus, APN is an attractive biomarker for imaging tumor angiogenesis. Here we report results obtained from biodistribution and single photon emission computed tomography (SPECT) imaging studies of a technetium-99m labeled probestin (a potent APN inhibitor) conjugate containing a tripeptide, Asp-DAP-Cys (DAP = 2,3-diaminopropionic acid), chelator and a 8-amino-3,6-dioxaoctanoic acid (PEG2) linker conducted in nude mice xenografted with HT-1080 human fibrosarcoma tumors (APN-positive tumors). These results collectively demonstrate that 99mTc-probestin uptake by tumors and other APN expressing tissues in vivo is specific and validate the use of probestin as a vector for targeting APN in vivo.  相似文献   

16.
Affibody molecules generated by combinatorial protein engineering to bind the human epidermal growth factor receptor 2 (HER2) have in earlier studies proven to be promising tracers for HER2-mediated molecular imaging of cancer. Amino acid extensions either at the N- or C-terminus of these Z(HER2) affibody molecules, have been successfully employed for site-specific radiolabeling of the tracer candidates. Hexahistidyls or other tags, which would be convenient for recovery purposes, should be avoided since they could negatively influence the tumor targeting efficacy and biodistribution properties of the tracer. Using a new ?-lactamase-based protein fragment complementation assay (PCA), an affibody molecule was isolated which bound a Z(HER2) affibody molecule with sub-micromolar affinity, but not unrelated affibody molecules. This suggests that the interacting area include the HER2-binding surface of Z(HER2). This novel anti-idiotypic affibody molecule Z(E01) was produced in Escherichia coli, purified, and chemically coupled to a chromatography resin in order to generate an affibody-based affinity column, suitable for recovery of different variants of Z(HER2) affibody molecules, having a common binding surface for HER2. Eight such Z(HER2) affibody molecules, designed for future radioimaging investigations, having different C-terminal peptide extensions aimed for radioisotope ((??m)Tc)-chelation, were successfully produced and recovered in a single step to high purity using the anti-idiotypic affibody ligand for the affinity purification. These results clearly suggest a potential for the development of anti-idiotypic affibody-based resins for efficient recovery of related variants of a target protein that might have altered biochemical properties, thus avoiding the cumbersome design of specific recovery schemes for each variant of a target protein.  相似文献   

17.
Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule ZHER2:342. Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to + 12 °C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-ZHER2:2891-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, KD, of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 °C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor α, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor β) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.  相似文献   

18.
Cellular effects of HER3-specific affibody molecules   总被引:1,自引:0,他引:1  
Recent studies have led to the recognition of the epidermal growth factor receptor HER3 as a key player in cancer, and consequently this receptor has gained increased interest as a target for cancer therapy. We have previously generated several Affibody molecules with subnanomolar affinity for the HER3 receptor. Here, we investigate the effects of two of these HER3-specific Affibody molecules, Z05416 and Z05417, on different HER3-overexpressing cancer cell lines. Using flow cytometry and confocal microscopy, the Affibody molecules were shown to bind to HER3 on three different cell lines. Furthermore, the receptor binding of the natural ligand heregulin (HRG) was blocked by addition of Affibody molecules. In addition, both molecules suppressed HRG-induced HER3 and HER2 phosphorylation in MCF-7 cells, as well as HER3 phosphorylation in constantly HER2-activated SKBR-3 cells. Importantly, Western blot analysis also revealed that HRG-induced downstream signalling through the Ras-MAPK pathway as well as the PI3K-Akt pathway was blocked by the Affibody molecules. Finally, in an in vitro proliferation assay, the two Affibody molecules demonstrated complete inhibition of HRG-induced cancer cell growth. Taken together, our findings demonstrate that Z05416 and Z05417 exert an anti-proliferative effect on two breast cancer cell lines by inhibiting HRG-induced phosphorylation of HER3, suggesting that the Affibody molecules are promising candidates for future HER3-targeted cancer therapy.  相似文献   

19.
OBJECTIVE: A micro-molecule peptide TP1623 of 99mTc-human epithelial growth factor receptor 2 (HER2) was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. METHODS: TP1623 was chemically synthesized and labeled with 99mTc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231) and cell binding activity were measured. Biodistribution of 99mTC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin–eosin (HE) and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99mTc- TP1623 and the tumor. RESULTS: The labeling ratio of 99mTc-TP1623, specific activity, and radiochemical purity (RCP) after 6 h at room temperature were (97.39 ± 0.23)%, (24.61 ± 0.06) TBq/mmol, and (93.25 ± 0.06)%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99mTc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in tumors in competitive inhibition of imaging, which indicates the combination of 99mTc-TP1623 and tumor was mediated by HER2. CONCLUSION: High labeling ratio and specific activity of 99mTc-TP1623 is successfully prepared; it is a molecular imaging agent for HER2-positive tumors that has potential applicative value.  相似文献   

20.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号