首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Diamond-Blackfan anemia (DBA) is caused by aberrant ribosomal biogenesis due to ribosomal protein (RP) gene mutations. To develop mechanistic understanding of DBA pathogenesis, we studied CD34+ cells from peripheral blood of DBA patients carrying RPL11 and RPS19 ribosomal gene mutations and determined their ability to undergo erythroid differentiation in vitro. RPS19 mutations induced a decrease in proliferation of progenitor cells, but the terminal erythroid differentiation was normal with little or no apoptosis. This phenotype was related to a G0/G1 cell cycle arrest associated with activation of the p53 pathway. In marked contrast, RPL11 mutations led to a dramatic decrease in progenitor cell proliferation and a delayed erythroid differentiation with a marked increase in apoptosis and G0/G1 cell cycle arrest with activation of p53. Infection of cord blood CD34+ cells with specific short hairpin (sh) RNAs against RPS19 or RPL11 recapitulated the two distinct phenotypes in concordance with findings from primary cells. In both cases, the phenotype has been reverted by shRNA p53 knockdown. These results show that p53 pathway activation has an important role in pathogenesis of DBA and can be independent of the RPL11 pathway. These findings shed new insights into the pathogenesis of DBA.  相似文献   

2.
Diamond-Blackfan anemia (DBA) is a rare congenital disease linked to mutations in the ribosomal protein genes rps19, rps24 and rps17. It belongs to the emerging class of ribosomal disorders. To understand the impact of DBA mutations on RPS19 function, we have solved the crystal structure of RPS19 from Pyrococcus abyssi. The protein forms a five alpha-helix bundle organized around a central amphipathic alpha-helix, which corresponds to the DBA mutation hot spot. From the structure, we classify DBA mutations relative to their respective impact on protein folding (class I) or on surface properties (class II). Class II mutations cluster into two conserved basic patches. In vivo analysis in yeast demonstrates an essential role for class II residues in the incorporation into pre-40S ribosomal particles. This data indicate that missense mutations in DBA primarily affect the capacity of the protein to be incorporated into pre-ribosomes, thus blocking maturation of the pre-40S particles.  相似文献   

3.
Cytochrome c oxidase (COX) deficiency is the most common cause of Leigh syndrome (LS). COX consists of ten nuclear-encoded and three mtDNA-encoded structural subunits. Although the nucleotide sequences of all 13 genes are known, no mutation was found in nuclear-encoded subunit genes of COX-deficiency patients. Zhu et al. (1998) and Tiranti et al. (1998) found nine mutations in the surfeit 1 (SURF1) gene in LS families with COX deficiency. The mouse surfeit gene cluster consists of six closely spaced housekeeping genes unrelated by sequence homology. Except for the Surf3 gene, the function is still not known. The juxtaposition of at least five of the surfeit genes is conserved between birds and mammals. We identified two novel mutations of SURF1 in a Japanese LS patient with COX deficiency using direct sequencing analysis. Firstly, a 2-bp deletion at nucleotide position 790 (790delAG) in exon 8 was found, which shifts the reading frame such that the mutant protein has a completely different amino acid sequence from codon 264 to the premature stop codon at 290. Secondly, we found a T-to-G transversion at nucleotide 820, resulting in the substitution of tyrosine by aspartic acid at codon 274 (Y274D). We also studied the parents' genes, and found that the Y274D mutation was in his father and the 790delAG mutation was in his mother heterozygously. Therefore, we concluded that the patient was a compound heterozygote with these mutations. These are the first pathogenetic SURF1 mutations identified in a Japanese family.  相似文献   

4.
5.
De novo origin of coding sequence remains an obscure issue in molecular evolution. One of the possible paths for addition (subtraction) of DNA segments to (from) a gene is stop codon shift. Single nucleotide substitutions can destroy the existing stop codon, leading to uninterrupted translation up to the next stop codon in the gene’s reading frame, or create a premature stop codon via a nonsense mutation. Furthermore, short indels-caused frameshifts near gene’s end may lead to premature stop codons or to translation past the existing stop codon. Here, we describe the evolution of the length of coding sequence of prokaryotic genes by change of positions of stop codons. We observed cases of addition of regions of 3′UTR to genes due to mutations at the existing stop codon, and cases of subtraction of C-terminal coding segments due to nonsense mutations upstream of the stop codon. Many of the observed stop codon shifts cannot be attributed to sequencing errors or rare deleterious variants segregating within bacterial populations. The additions of regions of 3′UTR tend to occur in those genes in which they are facilitated by nearby downstream in-frame triplets which may serve as new stop codons. Conversely, subtractions of coding sequence often give rise to in-frame stop codons located nearby. The amino acid composition of the added region is significantly biased, compared to the overall amino acid composition of the genes. Our results show that in prokaryotes, shift of stop codon is an underappreciated contributor to functional evolution of gene length.  相似文献   

6.
7.
Diamond-Blackfan anemia (DBA) is a rare congenital red-cell aplasia characterized by anemia, bone-marrow erythroblastopenia, and congenital anomalies and is associated with heterozygous mutations in the ribosomal protein (RP) S19 gene (RPS19) in approximately 25% of probands. We report identification of de novo nonsense and splice-site mutations in another RP, RPS24 (encoded by RPS24 [10q22-q23]) in approximately 2% of RPS19 mutation-negative probands. This finding strongly suggests that DBA is a disorder of ribosome synthesis and that mutations in other RP or associated genes that lead to disrupted ribosomal biogenesis and/or function may also cause DBA.  相似文献   

8.
6 out of 14 uncharacterized beta-thalassemia alleles from 187 Thai beta-thalassemia/HbE patients were identified by direct sequencing of DNA amplified by polymerase chain reaction. A novel mutation occurring from an insertion of adenosine in codon 95, which results in a shift of the reading frame with terminator at the new codon 101, was detected in one patient. In addition, two frameshift mutations not previously reported among the Thai population were also detected in 3 patients: one with a deletion of thymidine in codon 15 and two with an insertion of cytidine in codons 27/28. A frameshift mutation that occurred from a cytidine deletion in codon 41 was also found in one patient in this study. The remaining case was an amber mutation, GAG-TAG, in codon 43 in exon 2 of the beta-globin gene. These mutations bring the number of mutations known to be present in the Thai population to a total of 20, 15 of which were detected in beta-thalassemia/HbE patients.  相似文献   

9.
The gene encoding ribosomal protein S19 (RPS19) is mutated in approximately 25% of patients with Diamond-Blackfan anemia (DBA), which is a rare congenital erythroblastopenia. DBA patients have a variety of clinical characteristics, and the role of the RPS19 gene in the pathogenesis of the disease is presently unknown. To investigate a possible role for RPS19 in erythropoiesis, we looked for proteins associated with mouse RPS19 using a yeast two-hybrid system and identified a novel protein, which we named S19 binding protein (S19BP). The deduced amino acid sequence of S19BP derived from cDNA defines a calculated mass of 15,849 and an isoelectric point of 11.3. No known functional motifs were found in S19BP except a short polylysine tract embedded in a putative nucleolar localization signal. Immunolocalization experiments revealed that S19BP was highly concentrated in nucleoli after 6 h of transfection in Cos-7 cells. S19BP was expressed ubiquitously at a basal level but a significantly high level of expression was observed in some tissues.  相似文献   

10.
Diamond–Blackfan anemia (DBA) is an inherited red blood cell aplasia that usually presents during the first year of life. The main features of the disease are normochromic and macrocytic anemia, reticulocytopenia, and nearly absent erythroid progenitors in the bone marrow. The patients also present with growth retardation and craniofacial, upper limb, heart and urinary system congenital malformations in ~30–50 % of cases. The disease has been associated with point mutations and large deletions in ten ribosomal protein (RP) genes RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, RPS7, RPS10, RPS26, and RPL26 and GATA1 in about 60–65 % of patients. Here, we report a novel large deletion in RPL15, a gene not previously implicated to be causative in DBA. Like RPL26, RPL15 presents the distinctive feature of being required both for 60S subunit formation and for efficient cleavage of the internal transcribed spacer 1. In addition, we detected five deletions in RP genes in which mutations have been previously shown to cause DBA: one each in RPS19, RPS24, and RPS26, and two in RPS17. Pre-ribosomal RNA processing was affected in cells established from the patients bearing these deletions, suggesting a possible molecular basis for their pathological effect. These data identify RPL15 as a new gene involved in DBA and further support the presence of large deletions in RP genes in DBA patients.  相似文献   

11.
Steroid 21-hydroxylase deficiency is the leading cause of impaired cortisol synthesis in congenital adrenal hyperplasia (CAH). We have studied the structure of the CYP21B gene in 30 unrelated CAH patients using the polymerase chain reaction (PCR) to differentiate the active CYP21B gene from its highly related CYP21A pseudogene. The PCR approach obviates the need to distinguish the CYP21A and CYP21B genes by restriction endonuclease digestion and electrophoresis before analysis with labeled probes. Furthermore, direct nucleotide sequence analysis of CYP21B genes is demonstrated on the PCR-amplified DNA. Gene deletion of CYP21B, gene conversion of the entire CYP21B gene to CYP21A, frame shift mutations in exon 3, an intron 2 mutation that causes abnormal RNA splicing, and a mutation leading to a stop codon in exon 8 appear to be the major abnormalities of the CYP21B gene in our patients. These mutations appear to account for 21-hydroxylase deficiency in 22 of 26 of our salt-wasting CAH patients.  相似文献   

12.
13.
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes hexosaminidase A (alpha beta) and B (beta beta). The alpha subunit is encoded by the HEXA gene and the beta subunit by HEXB gene. Defects in the alpha or beta subunits lead to Tay-Sachs or Sandhoff disease, respectively. While many HEXA gene mutations have been reported only three HEXB gene mutations are known. We report the characterization of two rare HEXB mutations present in genomic DNA from a single fibroblast cell line, GM203, taken from a patient with the infantile form of Sandhoff disease. The first is a single base pair deletion in exon 7 changing the codon for Gly-258, GGA, to GA and the second, a two base pair deletion in exon 11 changes the codons for Arg-435/Val-436, AGA/GTC, to AGTC. Each mutation produces a frame shift in the affected allele that results in a premature stop codon 17 or 20 codons downstream, respectively. These mutations also result in the inability to detect beta-mRNA by Northern blot analysis of total mRNA. These data are consistent with the idea that the severe infantile form of Tay-Sachs or Sandhoff disease is associated with a total lack of residual hexosaminidase A activity.  相似文献   

14.
Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in ~30%–50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.  相似文献   

15.
Diamond–Blackfan anemia (DBA) is a severe congenital anemia characterized by a specific decrease of erythroid precursors. The disease is also associated with growth retardation, congenital malformations, a predisposition for malignant disease and heterozygous mutations in either of the ribosomal protein (RP) genes RPS7, RPS17, RPS19, RPS24, RPL5, RPL11 and RPL35a. We show herein that primary fibroblasts from DBA patients with truncating mutations in RPS19 or in RPS24 have a marked reduction in proliferative capacity. Mutant fibroblasts are associated with extended cell cycles and normal levels of p53 when compared to w.t. cells. RPS19 mutant fibroblasts accumulate in the G1 phase, whereas the RPS24 mutant cells show an altered progression in the S phase resulting in reduced levels in the G2/M phase. RPS19 deficient cells exhibit reduced levels of Cyclin-E, CDK2 and retinoblastoma (Rb) protein supporting a cell cycle arrest in the G1 phase. In contrast, RPS24 deficient cells show increased levels of the cell cycle inhibitor p21 and a seemingly opposing increase in Cyclin-E, CDK4 and CDK6. In combination, our results show that RPS19 and RPS24 insufficient fibroblasts have an impaired growth caused by distinct blockages in the cell cycle. We suggest this proliferative constraint to be an important contributing mechanism for the complex extra-hematological features observed in DBA.  相似文献   

16.
Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome that is characterized by pure red-cell aplasia and associated physical deformities. It has been proven that defects of ribosomal proteins can lead to this disease and that RPS19 is the most frequently mutated gene in DBA patients. Previous studies suggest that p53-dependent genes and pathways play important roles in RPS19-deficient embryos. However, whether there are other vital factors linked to DBA has not been fully clarified. In this study, we compared the whole genome RNA-Seq data of zebrafish embryos injected with RPS19 morpholino (RPS19 MO), RPS19 and p53 morpholino simultaneously (RPS19+p53 MO) and control morpholino (control). We found that genes enriched in the functions of hematological systems, nervous system development and skeletal and muscular disorders had significant differential expression in RPS19 MO embryos compared with controls. Co-inhibition of p53 partially alleviates the abnormalities for RPS19-deficient embryos. However, the hematopoietic genes, which were down-regulated significantly in RPS19 MO embryos, were not completely recovered by the co-inhibition of p53. Furthermore, we identified the genome-wide p53-dependent and -independent genes and pathways. These results indicate that not only p53 family members but also other factors have important impacts on RPS19-deficient embryos. The detection of potential pathogenic genes and pathways provides us a new paradigm for future research on DBA, which is a systematic and complex hereditary disease.  相似文献   

17.
Colorectal cancer has become the third leading cause of death from cancer in Taiwan. Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease characterized by the presence of multiple adenomatous polyps in the colon and rectum. The gene responsible for FAP(APC) was cloned in 1991. Extensive analyses of the mutation spectra in FAP kindreds have been performed in different countries, but the results have been highly variable (30–80%). In this study, we used denaturing high-performance liquid chromatography (DHPLC) followed by automatic sequencing in an effort to establish the mutation spectrum of APC from DNA of peripheral blood cells. Among the 6 FAP probands analyzed, mutations were detected in 3 (50%), 2 of which were novel. The first novel mutation was at codon 2166, with a C to T transition, resulting in a stop codon. The second novel mutation was at codon 1971, with a C to G transversion, resulting in an amino acid change from serine to cysteine. The third mutation involved an A insertion in the sequence of -AAAAAA- at codons 1554–1556, which created a downstream stop codon (codon 1558). This study is the first to report mutation analysis in Taiwanese FAP probands.  相似文献   

18.
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations. V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation.  相似文献   

19.
20.
Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a β-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G > A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T > G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T > G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号