首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Lamin B1 loss is a senescence-associated biomarker   总被引:1,自引:0,他引:1  
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.  相似文献   

3.
Nuclear reconstitution in vitro: stages of assembly around protein-free DNA   总被引:96,自引:0,他引:96  
J Newport 《Cell》1987,48(2):205-217
We have developed a cell-free system derived from Xenopus eggs that reconstitutes nuclear structure around an added protein-free substrate (bacteriophage lambda DNA). Assembled nuclei are morphologically indistinguishable from normal eukaryotic nuclei: they are surrounded by a double membrane containing nuclear pores and are lined with a peripheral nuclear lamina. Nuclear assembly involves discrete intermediate steps, including nucleosome assembly, scaffold assembly, and nuclear membrane and lamina assembly, indicating that during reconstitution nuclear organization is assembled one level at a time. Topoisomerase II inhibitors block nuclear assembly. Lamin proteins and membrane vesicles bind to chromatin late in assembly, suggesting that these components do not interact with chromatin that is formed early in assembly. Reconstituted nuclei replicate their DNA; replication begins only after envelope formation has initiated, indicating that envelope attachment may be important for regulating replication.  相似文献   

4.
A nuclear phosphoprotein, DEK, is implicated in certain human diseases, such as leukemia and antoimmune disorders, and a major component of metazoan chromatin. Basically as a modulator of chromatin structure, it can involve in various DNA and RNA‐dependent processes and function as either an activator or repressor. Despite of numerous efforts to suggest the biological role of DEK, direct target proteins of DEK in different physiological status remains elusive. To investigate if DEK protein triggers the changes in certain protein networks, DEK was knocked down at both types of cell clones using siRNA expression. Here we provide a catalogue of proteome profiles in total cell lysates derived from normal HeLa and DEK knock‐down HeLa cells and a good in vitro model system for dissecting the protein networks due to this proto‐oncogenic DEK protein. In this biological context, we compared total proteome changes by the combined methods of two‐dimensional gel electrophoresis, quantitative image analysis and MALDI‐TOF MS analysis. There were a large number of targets for DEK, which were differentially expressed in DEK knock‐down cells and consisted of 58 proteins (41 up‐regulated and 17 down‐regulated) differentially regulated expression was further confirmed for some subsets of candidates by Western blot analysis using specific antibodies. In the identified 58 spots, 16% of proteins are known to be associated with apoptosis. Among others, we identified apoptosis related proteins such as Annexins, Enolase1, Lamin A, and Glutathione‐S‐transferase omega 1. These results are consistent with recent studies indicating the crucial role of DEK in apoptosis pathway. We further demonstrated by ChIP analysis that knock‐down of DEK caused hyperacetylation of histones around Prx VI promoter which is upregulated in our profile. Using immunoblotting analysis, we have demonstrated the modulation of other caspase‐dependent apoptosis related proteins by DEK knock‐down and further implicate its role in apoptosis pathway. J. Cell. Biochem. 106: 1048–1059, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.  相似文献   

6.
7.
8.
The present study was designed to clarify the localization of LAP2beta and to compare it with those of lamins A/C and B in bovine oocytes after activation and in vitro fertilization (IVF). After fertilization, LAP2beta was not found until telophase II, and was observed around condensed chromatin after the extrusion of the second polar body, but not in activated oocytes. Although the reaction of LAP2beta was temporally negative or weak on the membrane of the growing small pronuclei, it became strong on the fully grown pronuclei of both activated and fertilized oocytes. Examination of the timing of DNA synthesis using bromodeoxyuridine revealed that the expression of LAP2beta on the pronuclear membrane became strong around the end of the DNA synthesis in both activated and fertilized oocytes. Both male and female pronuclei exhibited the same reactivity to all nuclear proteins examined. It was also shown that LAP2beta first assembled around condensed chromatin, followed by the integration of lamins B and A/C as in somatic cells. LAP2beta staining was maintained on the nuclear membrane of the embryonic cells at interphase until the later stage of preimplantational development. There were no differences between parthenogenetic and fertilized embryos in the expression and localization of LAP2beta from the PN-stage oocyte to the blastocyst. The assembly of LAP2beta was observed around the telophase chromatin of both blastocyst and cumulus cells. Thus, it was shown that the timing of the aggregation of LAP2beta at the second meiosis was different from that in the mitosis of blastocyst and somatic cells. LAP2beta was constantly expressed in the nuclear membrane in in vitro fertilized and parthenogenetic embryos as was lamin B, and lamin A/C was expressed stage-dependently in both types of embryos. Lamin A/C was positive in some inner cell mass cells of parthenogenetic blastocysts, but not those of in vitro fertilized embryos.  相似文献   

9.
10.
By immunocytochemistry, quantitative immunoblotting, and two-dimensional gel electrophoresis, we have analyzed the distribution of nuclear lamin proteins during chicken embryonic development. Whereas no qualitative differences in the patterns of expression of lamins A, B1, and B2 were observed during gametogenesis in either the female or the male germ line, profound changes in the composition of the nuclear lamina occurred during the development of somatic tissues. Most unexpectedly, early chicken embryos were found to contain little if any lamin A, although they contained substantial amounts of lamins B1 and B2. During embryonic development, lamin A became increasingly prominent, whereas the amounts of lamin B1 decreased in many tissues. Interestingly, the extent and the developmental timing of these changes displayed pronounced tissue-specific variations. Lamin B2 was expressed in fairly constant amounts in all cell types investigated (except for pachytene-stage germ cells). These results have implications for the purported functional specializations of individual lamin proteins. In addition, they suggest that alterations in the composition of the nuclear lamina may be important for the establishment of cell- or tissue-specific differences in nuclear architecture.  相似文献   

11.
12.
13.
14.
The nuclear lamina consists of a meshwork of lamins and lamina-associated proteins, which provide mechanical support, control size and shape of the nucleus, and mediate the attachment of chromatin to the nuclear envelope. Abnormal nuclear shapes are observed in aging cells of humans and nematode worms. The expression of laminΔ50 , a constitutively active lamin A splicing variant in Hutchinson–Gilford progeria syndrome patients, leads to the lobulation of the nuclear envelope accompanied by DNA damage, and loss of heterochromatin. So far, it has been unclear whether these age-related changes are laminΔ50 specific or whether proteins that affect nuclear shape such as KUGELKERN or LAMIN B in general play a causative role in senescence. Here we show that in adult Drosophila flies, the size of the nuclei increases with age and the nuclei assume an aberrant shape. Moreover, induced expression of the farnesylated lamina proteins Lamin B and Kugelkern cause aberrant nuclear shapes and reduce the lifespan of adult flies. The shorter lifespan correlates with an early decline in age-dependent locomotor behaviour. Expression of kugelkern or lamin B in mammalian cells induces a nuclear lobulation phenotype in conjunction with DNA damage, and changes in histone modification similar to that found in cells expressing laminΔ50  or in cells from aged individuals. We conclude that lobulation of the nuclear membrane induced by the insertion of farnesylated lamina-proteins can lead to aging-like phenotypes.  相似文献   

15.
Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N∶2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53−/− cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.  相似文献   

16.
Synthesis of nuclear lamins in BHK-21 cells synchronized with aphidicolin   总被引:2,自引:0,他引:2  
Lamins A, B and C are the major proteins of mammalian nuclear lamina and have been well studied in BHK-21 cells. By synchronizing BHK-21 cells with aphidicolin, a potent inhibitor of DNA alpha-polymerase, we were able to detect a differential pattern of synthesis for nuclear lamins during the cell cycle. Lamin B starts to be synthesized only in S phase up to mitosis while synthesis of lamins A and C remain stable throughout the cell cycle. The precursor of lamin A see its half-life increase from a reported 63 min in interphase cells to 103 min in G2/M cells.  相似文献   

17.
18.
Papillary thyroid carcinomas (PTCs) have characteristic nuclear shape changes compared to follicular-type thyroid epithelium. We tested the hypothesis that the altered nuclear shape results from altered distribution or expression of the major structural proteins of the nuclear envelope. Lamin A, lamin B1, lamin C, lamin B receptor (LBR), lamina-associated polypeptide 2 (LAP2), emerin, and nuclear pores were examined. PTC's with typical nuclear features by H&E were compared to non-neoplastic thyroid and follicular neoplasms using confocal microscopy, and semi-quantitative immunoblotting. Lamin A/C, lamin B1, LAP2, emerin, and nuclear pores all extend throughout the grooves and intranuclear inclusions of PTC. Their distribution and fluorescent intensity is not predictably altered relative to nuclear envelope irregularities. By immunoblotting, the abundance (per cell) and electrophoretic mobilities of lamin A, lamin B1, lamin C, emerin, and LAP2 proteins do not distinguish PTC, normal thyroid, or follicular neoplasms. These results do not support previously published predictions that lamin A/C expression is related to a loss of proliferative activity. At least three LAP2 isoforms are identified in normal and neoplastic thyroid. LBR is sparse or undetectable in all the thyroid samples. The results suggest that the irregular nuclear shape of PTC is not determined by these nuclear envelope structural proteins per se. We review the structure of the nuclear envelope, the major factors that determine nuclear shape, and the possible functional consequences of its alteration in PTC.  相似文献   

19.
The content of 4 fractions of nuclear proteins (histones, acid chromatin protein, globulins and chromatin-free acid protein) in diploid and polyploid hepatocytes from intact and regenerating liver of mice is studied. These types of nuclei are found to differ in the protein content and in the protein/DNA ratio. Synthesis of all classes of nuclear proteins was intensified at the G1-stage, and synthesis of DNP non-histone proteins at the end of S- and G2-stage. Possible role of different nuclear proteins in the regulation of cell multiplication is discussed.  相似文献   

20.
陈吉龙  王平 《动物学报》1994,40(4):344-350
以北京鸭腔上囊为实验材料,应用细胞分级抽提方法与非树脂包埋-去包埋剂的电镜制样技术相结合,显示出B细胞中相互连结的中间纤维-核纤层-核内骨架体系的超结构及其分布,中间纤维交织成网络状,纤维直径在9-11nm,其成份是分子量为67kD,等电点约为6.2的波形蛋白,核纤民支呈片层状结构环绕在核区周围,其主要成份是分子量为67kD,等电点偏酸性的Lamin B。核内骨架由粗细不一的纤维形成网络结构,其上  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号