首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
Whole slide imaging (WSI) allows pathologists to view virtual versions of slides on computer monitors. With increasing adoption of digital pathology, laboratories have begun to validate their WSI systems for diagnostic purposes according to reference guidelines. Among these the College of American Pathologists (CAP) guideline includes three strong recommendations (SRs) and nine good practice statements (GPSs). To date, the application of WSI to cytopathology has been beyond the scope of the CAP guideline due to limited evidence. Herein we systematically reviewed the published literature on WSI validation studies in cytology. A systematic search was carried out in PubMed-MEDLINE and Embase databases up to November 2021 to identify all publications regarding validation of WSI in cytology. Each article was reviewed to determine if SRs and/or GPSs recommended by the CAP guideline were adequately satisfied. Of 3963 retrieved articles, 25 were included. Only 4/25 studies (16%) satisfied all three SRs, with only one publication (1/25, 4%) fulfilling all three SRs and nine GPSs. Lack of a suitable validation dataset was the main missing SR (16/25, 64%) and less than a third of the studies reported intra-observer variability data (7/25, 28%). Whilst the CAP guideline for WSI validation in clinical practice helped the widespread adoption of digital pathology, more evidence is required to routinely employ WSI for diagnostic purposes in cytopathology practice. More dedicated validation studies satisfying all SRs and/or GPSs recommended by the CAP are needed to help expedite the use of WSI for primary diagnosis in cytopathology.  相似文献   

2.
Telepathology, the practice of pathology at a long distance, has advanced continuously since 1986. Today, fourth-generation telepathology systems, so-called virtual slide telepathology systems, are being used for education applications. Both conventional and innovative surgical pathology diagnostic services are being designed and implemented as well. We have a successful experience in Egypt in applying the static & dynamic techniques in a pilot project between the Italian Hospital in Cairo (NPO) and the Civico Hospital in Palermo This project began in 2003 and continued till now. In 2004, centers in Venice, London and Pittsburgh participated actively in our project. During the past seven years we consulted on many problematic pathological cases with these different specialized pathological centers in Italy, UK & USA. In addition to the highly specialized scientific value of consulting on the cases and exchanging knowledge, we saved a lot of time and money and succeeded in providing our patients with a better medical service. In view of this success we have already established a new Digital Telepathology unit (DTU) in the pathology department, Cairo University, using the latest technique of telepathology which is Whole Slide Imaging (WSI) since one year. This unit is considered the first Digital pathology unit in all the universities of the whole Middle East. During the passed year we created a digital pathology library for the under graduate students using the WSI technique and changed the teaching method of the histopathology slides to be completely digital. We are building another digital pathology library (for post graduate candidates) which will be available to all pathology candidates in Egyptian universities & universities in the surrounding Arabic countries. We are also creating a digital pathology network between pathology centers in the Middle East for exchanging knowledge & telepathology.  相似文献   

3.
Whole slide imaging (WSI) allows generation of large whole slide images and their navigation with zoom in and out like a true virtual microscope. It has become widely used in surgical pathology for many purposes, such as education and training, research activity, teleconsultation, and primary diagnosis. However, in cytopathology, the use of WSI has been lagging behind histology, mainly due to the cytological specimen's characteristics, as groups of cells of different thickness are distributed throughout the slide. To allow the same focusing capability of light microscope, slides have to be scanned at multiple focal planes, at the cost of longer scan times and larger file size. These are the main technical pitfalls of WSI for cytopathology, partly overcome by solutions like liquid‐based preparations. Validation studies for the use in primary diagnosis are less numerous and more heterogeneous than in surgical pathology. WSI has been proved effective for training students and successfully used in proficiency testing, allowing the creation of digital cytology atlases. Longer scan times are also a barrier for use in rapid on‐site evaluation, but WSI retains its advantages of easy sharing of images for consultation, multiple simultaneous viewing in different locations, the possibility of unlimited annotations and easy integration with medical records. Moreover, digital slides set the laboratory free from reliance on a physical glass slide, with no more concern of fading of stain or slide breakage. Costs are still a problem for small institutions, but WSI can also represent the beginning of a more efficient way of working.  相似文献   

4.
The recent years have been characterised by a rapid development of whole slide imaging (WSI) especially in its applications to histology. The application of WSI technology to cytology is less common because of technological problems related to the three‐dimensional nature of cytology preparations (which requires capturing of z‐stack information, with an increase in file size and usability issues in viewing cytological preparations). The aim of this study is to provide a review of the literature on the use of digital cytology and provide an overview of cytological applications of WSI in current practice as well as identifying areas for future development.  相似文献   

5.
In the last 10 years, whole slide imaging (WSI) has seen impressive progress not only in image quality and scanning speed but also in the variety of systems available to pathologists. However, we have noticed that most systems have relatively simple optics axes and rely on software to optimize image quality and colour balance. While much can be done in software, this study examines the importance of optics, in particular optical filters, in WSI.Optical resolution is a function of the wavelength of light used and the numerical aperture of the lens system (Resolution = (f) wavelength/2 NA). When illumining light is not conditioned correctly with filters, there is a tendency for the wavelength to shift to longer values (more red) because of the characteristics of the lamps in common use. Most microscopes (but remarkably few WSI devices) correct for this with ND filter for brightness and Blue filter (depends on the light source) for colour correction.Using H&E slides research microscopes (Axiophot, Carl Zeiss MicroImaging, Inc. NY. Eclipse 50i., Nikon Inc. NY) at 20x, an attached digital camera (SPOT RT741 Slider Color, Diagnosis Instruments., MI USA), and a filter set, we examined the effect of filters and software enhancement on digital image quality. The focus value (as evaluated by focus evaluation software developed in house and SPOT imaging Software v4.6) was used as a proxy for image quality. Resolution of tissue features was best with the use of both the Blue and ND filters (in addition to software enhancement). Images without filters but with software enhancement while superficially good, lacked some details of specimen morphology and were unclear compared with the images with filters.The results indicate that the appropriate use of optical filters could measurably improve the appearance and resolution of WSI images.  相似文献   

6.
INTRODUCTION: Digital pathology includes the information technology that allows for the management of information, including data and images, generated in an anatomic pathology department. COST ACTION IC0604: The integration of digital slides in the electronic health record is one of the main objectives of COST Action IC0604 "Telepathology Network in Europe" (EURO-TELEPATH). Fostering use of medical informatics standards and adapting them to current needs is needed to manage efficiently extremely large medical images, like digital slide files. DIGITAL SLIDES IN PATHOLOGY: Digital slides can play a role in disease prevention, primary diagnosis, and second opinion. In all these tasks, automated image analysis can also be a most valuable tool. INTEROPERABILITY IN PATHOLOGY INFORMATION SYSTEMS: In order to achieve an efficient interoperability between pathology information systems with other clinical information systems, obtaining a seamless integration of pathology images (gross pictures and digital slides) with LIS-Pathology Information system in a web environment is an important task. Primary care information systems should also be included in the integration, since primary care centres play an essential role in the generation of clinical information and specimen collection. A common terminology, based in SNOMED CT is also needed. CONCLUSIONS: Main barrier in the integration of digital slides in pathology workflow and eHealth record is the cost of current digital slide scanners. Pathology information system vendors should participate in standardization bodies.  相似文献   

7.

Background

Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools.

Methods

Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries.

Results

We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format.

Conclusions

Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow.
  相似文献   

8.
The rationale for choosing a remote quantitative method supporting a diagnostic decision requires some empirical studies and knowledge on scenarios including valid telepathology standards. The tumours of the central nervous system [CNS] are graded on the base of the morphological features and the Ki-67 labelling Index [Ki-67 LI]. Various methods have been applied for Ki-67 LI estimation. Recently we have introduced the Computerized Analysis of Medical Images [CAMI] software for an automated Ki-67 LI counting in the digital images. Aims of our study was to explore the accuracy and reliability of a remote assessment of Ki-67 LI with CAMI software applied to the whole slide images [WSI]. The WSI representing CNS tumours: 18 meningiomas and 10 oligodendrogliomas were stored on the server of the Warsaw University of Technology. The digital copies of entire glass slides were created automatically by the Aperio ScanScope CS with objective 20x or 40x. Aperio's Image Scope software provided functionality for a remote viewing of WSI. The Ki-67 LI assessment was carried on within 2 out of 20 selected fields of view (objective 40x) representing the highest labelling areas in each WSI. The Ki-67 LI counting was performed by 3 various methods: 1) the manual reading in the light microscope - LM, 2) the automated counting with CAMI software on the digital images - DI , and 3) the remote quantitation on the WSIs - as WSI method. The quality of WSIs and technical efficiency of the on-line system were analysed. The comparative statistical analysis was performed for the results obtained by 3 methods of Ki-67 LI counting. The preliminary analysis showed that in 18% of WSI the results of Ki-67 LI differed from those obtained in other 2 methods of counting when the quality of the glass slides was below the standard range. The results of our investigations indicate that the remote automated Ki-67 LI analysis performed with the CAMI algorithm on the whole slide images of meningiomas and oligodendrogliomas could be successfully used as an alternative method to the manual reading as well as to the digital images quantitation with CAMI software. According to our observation a need of a remote supervision/consultation and training for the effective use of remote quantitative analysis of WSI is necessary.  相似文献   

9.
Microscopy has been constantly evolving since the end of the Twentieth Century, with the introduction of new resources which have improved its practice. For example, the use of the virtual microscope has reached a high level of maturity; it is a synergy among disciplines such as pathology, histology, medical informatics and image analysis. This technology has moved forward many paradigms in research, diagnosis, education and medical training. The virtual microscopy systems require the digitalization of a physical slide, using motorized microscopes, pre and post image processing, compression, transmission and visualization. This article provides an extensive analysis of each of these processes.? The main characteristics of virtual microscopy are presented as well as the impact of these systems in image interpretation and in diagnostic activities.  相似文献   

10.

Introduction

Mitotic Activity Index (MAI) is an important independent prognostic factor and an integral part of the breast cancer grading system. Thus, correct estimation of this prognostically relevant feature is essential for guiding treatment decision and assessing patient prognosis.The aim of this study was to validate the use of high resolution Whole Slide Images (WSI) in estimating MAI in breast cancer specimens.

Methods

MAI was evaluated in 100 consecutive breast cancer specimens by three observers on two occasions, microscopically and on WSI with a wash out period of 4 months. MAI was also translated to mitotic scores as in grading. Inter- and intra-observer agreement between microscopic and digital MAI counts and scores was measured.

Results

Almost perfect inter-observer agreements were obtained from counting MAI using a conventional microscope (intra-class correlation coefficient (ICCC) 0.879) as well as on WSI (ICCC 0.924). K coefficients reflected good inter-observer agreements among observers'' microscopic mitotic scores (average kappa 0.642). Comparable results were also observed among digital mitotic scores (average kappa 0.635). There was strong to perfect intra-observer agreements between MAI counts and mitotic scores for the two diagnostic modalities (ICCC 0.716–0.863, kappa 0.506–0.617). There were no significant differences in mitotic scores using both diagnostic modalities.

Conclusion

Scoring mitoses using WSI in breast cancer seems to be just as reliable and reproducible as when using a microscope. Further development of software and image quality will definitely encourage the use of WSI in routine pathology practice.  相似文献   

11.
A pilot study examined the extent to which eye movements occurring during interpretation of digitized breast biopsy whole slide images (WSI) can distinguish novice interpreters from experts, informing assessments of competency progression during training and across the physician-learning continuum. A pathologist with fellowship training in breast pathology interpreted digital WSI of breast tissue and marked the region of highest diagnostic relevance (dROI). These same images were then evaluated using computer vision techniques to identify visually salient regions of interest (vROI) without diagnostic relevance. A non-invasive eye tracking system recorded pathologists’ (N = 7) visual behavior during image interpretation, and we measured differential viewing of vROIs versus dROIs according to their level of expertise. Pathologists with relatively low expertise in interpreting breast pathology were more likely to fixate on, and subsequently return to, diagnostically irrelevant vROIs relative to experts. Repeatedly fixating on the distracting vROI showed limited value in predicting diagnostic failure. These preliminary results suggest that eye movements occurring during digital slide interpretation can characterize expertise development by demonstrating differential attraction to diagnostically relevant versus visually distracting image regions. These results carry both theoretical implications and potential for monitoring and evaluating student progress and providing automated feedback and scanning guidance in educational settings.  相似文献   

12.
The traditional microscope, together with the “routine” hematoxylin and eosin (H & E) stain, remains the “gold standard” for diagnosis of cancer and other diseases; remarkably, it and the majority of associated biological stains are more than 150 years old. Immunohistochemistry has added to the repertoire of “stains” available. Because of the need for specific identification and even measurement of “biomarkers,” immunohistochemistry has increased the demand for consistency of performance and interpretation of staining results. Rapid advances in the capabilities of digital imaging hardware and software now offer a realistic route to improved reproducibility, accuracy and quantification by utilizing whole slide digital images for diagnosis, education and research. There also are potential efficiencies in work flow and the promise of powerful new analytical methods; however, there also are challenges with respect to validation of the quality and fidelity of digital images, including the standard H & E stain, so that diagnostic performance by pathologists is not compromised when they rely on whole slide images instead of traditional stained tissues on glass slides.  相似文献   

13.

Introduction

Standardization and validation of the color displayed by digital slides is an important aspect of digital pathology implementation. While the most common reason for color variation is the variance in the protocols and practices in the histology lab, the color displayed can also be affected by variation in capture parameters (for example, illumination and filters), image processing and display factors in the digital systems themselves.

Method

We have been developing techniques for color validation and optimization along two paths. The first was based on two standard slides that are scanned and displayed by the imaging system in question. In this approach, one slide is embedded with nine filters with colors selected especially for H&;E stained slides (looking like tiny Macbeth color chart); the specific color of the nine filters were determined in our previous study and modified for whole slide imaging (WSI). The other slide is an H&;E stained mouse embryo. Both of these slides were scanned and the displayed images were compared to a standard. The second approach was based on our previous multispectral imaging research.

Discussion

As a first step, the two slide method (above) was used to identify inaccurate display of color and its cause, and to understand the importance of accurate color in digital pathology. We have also improved the multispectral-based algorithm for more consistent results in stain standardization. In near future, the results of the two slide and multispectral techniques can be combined and will be widely available.We have been conducting a series of researches and developing projects to improve image quality to establish Image Quality Standardization. This paper discusses one of most important aspects of image quality – color.
  相似文献   

14.
The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.  相似文献   

15.
Obtaining digital images of color brightfield microscopy is an important aspect of biomedical research and the clinical practice of diagnostic pathology. Although the field of digital pathology has had tremendous advances in whole-slide imaging systems, little effort has been directed toward standardizing color brightfield digital imaging to maintain image-to-image consistency and tonal linearity. Using a single camera and microscope to obtain digital images of three stains, we show that microscope and camera systems inherently produce image-to-image variation. Moreover, we demonstrate that post-processing with a widely used raster graphics editor software program does not completely correct for session-to-session inconsistency. We introduce a reliable method for creating consistent images with a hardware/software solution (ChromaCal™; Datacolor Inc., NJ) along with its features for creating color standardization, preserving linear tonal levels, providing automated white balancing and setting automated brightness to consistent levels. The resulting image consistency using this method will also streamline mean density and morphometry measurements, as images are easily segmented and single thresholds can be used. We suggest that this is a superior method for color brightfield imaging, which can be used for quantification and can be readily incorporated into workflows.  相似文献   

16.

Background

Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study.

Methods

From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart.

Results

The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index).

Conclusions

We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.
  相似文献   

17.

Background

Digital pathology, i.e., applications of digital information technologies to pathology practice, has been expanding in the recent decades and the mode of pathology diagnostic practice is changing with enhanced precision. In the present study the changing processes of digital pathology in Japan were investigated and trends to future were discussed.

Methods

The changing status of digital pathology was investigated through reviewing the records of annual meetings of the Japanese Research Society of Telepathology and Pathology Informatics (JRST-PI) and of the Japanese pathology related medical and informatics journals. The results of the Japanese questionnaire survey conducted in 2008-2009 on telepathology and virtual slide were also reviewed. In addition effectiveness of an experimental automatic pathology diagnostic aid system using computer artificial intelligence was investigated by checking its rate of correct diagnosis for given prostate carcinoma digital images.

Results

Telepathology played a central role in the development of digital pathology in Japan. Both macroscopic and microscopic pathology digital images were routinely generated and used for diagnostic purposes in major hospitals. Virtual slide (VS) digital images were used first for education then for conference, consultation and also gradually for routine diagnosis and telepathology. The experimental automatic diagnostic aid system achieved the rate of correct diagnosis around 95% for prostate carcinoma and its use for automatic mapping of cancerous areas in a given tissue image was successful.

Conclusions

Advance in the digital information technologies gave revolutionary impacts on pathology education, conference, consultation, diagnosis, telepathology and also on pathology diagnostic procedures in Japan. The future will be bright for pathologists by the advanced digital pathology but we should pay attention to make the technologies and their effects under our control.
  相似文献   

18.
生物多样性信息学:一个正在兴起的新方向及其关键技术   总被引:5,自引:0,他引:5  
生物多样性科学和生物信息学是生命科学中两个极为重要也是十分活跃的交叉学科,生物多样性信息学则是目前正在兴起的一个新方向,基发展必将进一步深化信息技术在生物多样性研究中的应用。本文简要介绍了国内外该领域的主要目标与进展,讨论了有关的关键技术(如数据库间的互操作与数字图书馆),并列出了两个原型系统(Species2000和GBIF)和其他相关系统的网址。  相似文献   

19.

Introduction

Since their introduction in 1999, fully automated, high speed, high-resolution whole slide imaging devices have become increasing more reliable, fast and capable. While by no means perfect, these devices have evolved to a point where one can consider placing them in a pre-diagnostic role in a clinical histology lab.

Methods

At the Massachusetts General Hospital, we are running a pilot study placing high end WSI devices in our main clinical histology lab (after the cover slipper and before slides are sent to the pathologist) to examine the requirement for both the machine and the laboratory.

Results

Placing WSI systems in the clinical lab stresses the system in terms of reliability and throughput. Significantly however, success requires significant modification to the lab workflow. It is likely laboratories need to move from manual, large batch processes to increasingly automated, continuous flow (or mini-batch) processes orchestrated by the LIS using bar coding to track and direct slides, and incorporating the decision to image into the specimen type and the histology orders. Furthermore, image quality, capture speed and reliability are functions of the quality of the histology presented to the WSI devices.

Conclusion

Imaging in pathology does not begin in a WSI robot but in the grossing room and in the histology lab. As more and more imaging devices are placed in histology lab, the inter-relationships histology and pathology imaging will become increasing understood.
  相似文献   

20.
Diagnostic surgical pathology or tissue–based diagnosis still remains the most reliable and specific diagnostic medical procedure. The development of whole slide scanners permits the creation of virtual slides and to work on so-called virtual microscopes. In addition to interactive work on virtual slides approaches have been reported that introduce automated virtual microscopy, which is composed of several tools focusing on quite different tasks. These include evaluation of image quality and image standardization, analysis of potential useful thresholds for object detection and identification (segmentation), dynamic segmentation procedures, adjustable magnification to optimize feature extraction, and texture analysis including image transformation and evaluation of elementary primitives. Grid technology seems to possess all features to efficiently target and control the specific tasks of image information and detection in order to obtain a detailed and accurate diagnosis. Grid technology is based upon so-called nodes that are linked together and share certain communication rules in using open standards. Their number and functionality can vary according to the needs of a specific user at a given point in time. When implementing automated virtual microscopy with Grid technology, all of the five different Grid functions have to be taken into account, namely 1) computation services, 2) data services, 3) application services, 4) information services, and 5) knowledge services. Although all mandatory tools of automated virtual microscopy can be implemented in a closed or standardized open system, Grid technology offers a new dimension to acquire, detect, classify, and distribute medical image information, and to assure quality in tissue–based diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号