首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinson’s disease (PD), like many common age-related conditions, has been recognized to have a substantial genetic component. Multiple lines of evidence suggest that Leucine-rich repeat kinase 2 (LRRK2) is a crucial factor to understanding the etiology of PD. LRRK2 is a large, widely expressed, multi-domain and multifunctional protein. LRRK2 mutations are the major cause to inherited and sporadic PD. In this review, we discuss the pathology and clinical features which show diversity and variability of LRRK2-associated PD. In addition, we do a thorough literature review and provide theoretical data for gene counseling. Further, we present the evidence linking LRRK2 to various possible pathogenic mechanism of PD such as α-synuclein, tau, inflammatory response, oxidative stress, mitochondrial dysfunction, synaptic dysfunction as well as autophagy-lysosomal system. Based on the above work, we investigate activities both within GTPase and outside enzymatic regions in order to obtain a potential therapeutic approach to solve the LRRK2 problem.  相似文献   

2.
3.
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.  相似文献   

4.
Molecular genetic analysis of congenital adrenal hyperplasia (CAH) was carried out in 59 patients from the Republic of Baskortostan, which belonged to two main groups. The first group was represented by 35 patients with salt wasting form of the disease, and the second group was comprised of 24 patients with simple virilizing form. Analysis of the CYP21A2 gene in the patients with congenital adrenal hyperplasia from the Republic of Bashkortostan revealed seven different mutations on 81.58% chromosomes, including deletion/conversion delA2 or LGC gene, R356W, I2splice, I172N, Q318X, V281L, and P30L. The mutations were present on 89.71% of chromosomes from the patients with salt wasting form, and in 69.5% of chromosomes from the patients with simple virilizing form. The most frequent mutation was gene deletion/conversion, delA2 or LGC, which was found with the frequency of 30.83%. In six CAH patients the presence of three different mutation clusters on one chromosome was demonstrated: Q318X + R356W, I172N + Q318X, and delA2 or LGC + V281L. For the mutations leading to partial loss of 21-hydroxylase activity and simple virilizing form, 100% conformity of the phenotype to genotype was established.  相似文献   

5.
6.

Objectives

To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins.

Results

To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations.

Conclusions

We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
  相似文献   

7.
Myostatin (MSTN), a protein encoded by growth differentiation factor 8 (GDF8), is primarily expressed in skeletal muscle and negatively regulates the development and regeneration of muscle. Accordingly, myostatin-deficient animals exhibit a double-muscling phenotype. The CRISPR/Cas9 system has proven to be an efficient genome-editing tool and has been applied to gene modification in cells from many model organisms such as Drosophila melanogaster, zebrafish, mouse, rat, sheep, and human. Here, we edited the GDF8 gene in fibroblasts and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. The CRISPR/Cas9-mediated mutation efficiency in fibroblasts was as high as 87.5% in pig and 78.9% in buffalo. We then obtained single-cell clones with mutations at the specific sites of the GDF8 gene by screening with G418 in fibroblasts of pig and buffalo. In addition, the frequencies of Cas9/gRNA-mediated mutations were at 36 and 25% in the intracytoplasmic sperm injection embryos of pig and in vitro fertilization embryos of buffalo, respectively. Our work demonstrates that the Cas9/gRNA system is a highly efficient and fast tool for genome editing in cultured cells and embryos of Debao pig and swamp buffalo. These results can be helpful for the establishment of a new animal strain that can generate more meat.  相似文献   

8.
Morbus Parkinson     
Monogenic Parkinson’s disease (PD), i.?e. parkinsonism caused by mutations in single genes, represents ~5% of all PD cases. Over the past 20 years, three autosomal dominantly (SNCA, LRRK2, VPS35) and three autosomal recessively (Parkin, PINK1, DJ-1) inherited causal PD genes have been identified and validated. Although pathogenic changes in SNCA are very rare, begin early, and may be associated with the development of dementia, pathogenic variants in LRRK2-linked PD are most common among monogenic PS and patients are clinically indistinguishable from those with idiopathic PD. In patients with onset before the age of 40 years, pathogenic variants in the Parkin and PINK1 genes should be suspected, and in patients with a positive family history, genetic counseling should be carried out. Recently, dynamic developments in the area of Parkinson’s genetics have led to new therapeutic approaches and the first gene-specific therapies have entered the early testing phase. Besides the established monogenic PD genes, candidate genes have been identified, but not yet conclusively validated. In addition to established monogenic PD, as yet unvalidated Parkinson’s candidate genes and well-characterized genetic risk exist at this time. As monogenic PD represents a “model disease” for idiopathic PD too, further progress toward more personalized medicine may be expected for both monogenic and idiopathic PD.  相似文献   

9.
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.  相似文献   

10.

Background

The ease of use of CRISPR-Cas9 reprogramming, its high efficacy, and its multiplexing capabilities have brought this technology at the forefront of genome editing techniques. Saccharomyces pastorianus is an aneuploid interspecific hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been domesticated for centuries and is used for the industrial fermentation of lager beer. For yet uncharacterised reasons, this hybrid yeast is far more resilient to genetic alteration than its ancestor S. cerevisiae.

Results

This study reports a new CRISPR-Cas9 method for accurate gene deletion in S. pastorianus. This method combined the Streptococcus pyogenes cas9 gene expressed from either a chromosomal locus or from a mobile genetic element in combination with a plasmid-borne gRNA expression cassette. While the well-established gRNA expression system using the RNA polymerase III dependent SNR52 promoter failed, expression of a gRNA flanked with Hammerhead and Hepatitis Delta Virus ribozymes using the RNA polymerase II dependent TDH3 promoter successfully led to accurate deletion of all four alleles of the SeILV6 gene in strain CBS1483. Furthermore the expression of two ribozyme-flanked gRNAs separated by a 10-bp linker in a polycistronic array successfully led to the simultaneous deletion of SeATF1 and SeATF2, genes located on two separate chromosomes. The expression of this array resulted in the precise deletion of all five and four alleles mediated by homologous recombination in the strains CBS1483 and Weihenstephan 34/70 respectively, demonstrating the multiplexing abilities of this gRNA expression design.

Conclusions

These results firmly established that CRISPR-Cas9 significantly facilitates and accelerates genome editing in S. pastorianus.
  相似文献   

11.
12.
The prion-like determinant [ISP +] manifests itself as an antisuppressor of certain sup35 mutations. To establish that [ISP +] is indeed a new yeast prion, it is necessary to identify the gene that codes for the protein whose prion form is [ISP +]. Analysis of the transformants obtained by transformation of an [ISP +] strain with an insertion gene library revealed three genes controlling the [ISP +] maintenance: UPF1, UPF2, and SFP1. SFP1 codes for a potentially prionogenic protein, which is enriched in Asn and Gln residues, and is thereby the most likely candidate for the [ISP +] structural gene. UPF1 and UPF2 code for components of nonsense-mediated mRNA decay. The [ISP +] elimination caused by UPF1 and UPF2 inactivation was reversible, and Upf1p and Upf2p were not functionally related to phosphatase Ppz1p, which influences the [ISP +] manifestation. Possible mechanisms sustaining the influence of UPF1 and UPF2 on [ISP +] maintenance are discussed.  相似文献   

13.
Candida tropicalis can grow with alkanes or plant oils as the sole carbon source, and its industrial application thus has great potential. However, the choice of a suitable genetic operating system can effectively increase the speed of metabolic engineering. MazF functions as an mRNA interferase that preferentially cleaves single-stranded mRNAs at ACA sequences to inhibit protein synthesis, leading to cell growth arrest. Here, we constructed a suicide plasmid named pPICPJ-mazF that uses the mazF gene of Escherichia coli as a counterselectable marker for the markerless editing of C. tropicalis genes to increase the rate of conversion of oils into long-chain dicarboxylic acids. To reduce the β-oxidation of fatty acids, the carnitine acetyltransferase gene (CART) was deleted using the gene editing system, and the yield of long-chain acids from the strain was increased to 8.27 g/L. By two homologous single exchanges, the promoters of both the cytochrome P450 gene and the NADPH–cytochrome P450 reductase gene were subsequently replaced by the constitutively expressed promoter pGAP, and the production of long-chain dicarboxylic acids by the generated strain (C. tropicalis PJPP1702) reached 11.39 g/L. The results of fed-batch fermentation showed that the yield of long-chain acids from the strain was further increased to 32.84 g/L, which was 11.4 times higher than that from the original strain. The results also showed that the pPICPJ-mazF-based markerless editing system may be more suited for completing the genetic editing of C. tropicalis.  相似文献   

14.
Resistance to fusidic acid in Corynebacterium glutamicum and Brevibacterium flavum is associated with mutations in the fusA gene, which encodes the elongation factor G (EF-G). Two to ten percent of fusidic acid-resistant clones were shown to produce more lysine than parent strains. Sequencing of the fusA gene in clones with a high level of lysine production made it possible to find two mutations in the gene at position 1383—С1383G and С1383А. These mutations cause amino acid replacement at position 461 in the protein EF-G, namely, histidine is substituted by glutamine (H461Q). The mutation С1383G was introduced in the chromosomal copy of the fusA gene in C. glutamicum and B. flavum strains by homologous recombination. All clones containing the mutant variant of the fusA gene produced 10% more lysine than the parent strains.  相似文献   

15.
Many successful studies on genome editing in plants have been reported and one of the popular genome editing technology used in plants is Zinc Finger Nucleases (ZFN), which are chimeric proteins composed of synthetic zinc finger-based DNA binding domain and a DNA cleavage domain. The objective of this research was to utilize ZFNs to induce a double-stranded break in SSIVa, a soluble starch synthase involved in starch biosynthesis pathway, leading to the regulation of the SSIVa expression. The isoform SSIVa is not yet well studied, thus, by modifying the endogenous loci in SSIVa, we can explore on the specific roles of this gene in starch biosynthesis and other possible functions it might play. In this study, we used ZFN-mediated targeted gene disruption in the coding sequence of the SSIVa rice gene in an effort to elucidate the functional role of the gene. Generation of transgenic plants carrying premature stop codons and substitution events, revealed no SSIVa mRNA expression, low starch contents and dwarf phenotypes. Remarkably, based on our analysis SSIVa gene disruption had no effect on other starch synthesis related genes as their expression remained at wild type levels. Therefore, the engineered ZFNs can efficiently cleave and stimulate mutations at SSIVa locus in rice to  相似文献   

16.
17.
Mutations in the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 gene (CHCHD10), involved in mitochondrial function, have recently been reported as a causative gene of amyotrophic lateral sclerosis (ALS). The aim of this study was to obtain the mutation prevalence of CHCHD10 and the phenotypes with mutations in Chinese ALS patients. A cohort of 499 ALS patients including 487 sporadic ALS (SALS) and 12 familial ALS (FALS), from the Department of Neurology, West China Hospital of Sichuan University, were screened for mutations of all exons of the CHCHD10 gene by Sanger sequencing. Novel candidate mutations or variants were confirmed by polymerase chain reaction-restriction fragment length polymorphism in 466 healthy individuals. All patients identified with mutations of CHCHD10 gene were screened for mutations of the common ALS causative genes including C9orf72, SOD1, TARDBP, FUS, PFN1, and SQSTM1. Three heterozygous variants, including two missense mutations (c.275A?>?G (p.Y92C) and c.306G?>?C (p.Q102H)) and a synonymous change c.306G?>?A (p.Q102Q), were found in exon 3 of CHCHD10 in three alive SALS individuals (with the longest disease duration of 8.6 years), all of which were not detected in healthy controls. No mutation in CHCHD10 was identified in FALS patients. No mutation was found in the aforementioned common ALS causative genes in the patients who carried CHCHD10 mutations. The mutation frequency of CHCHD10 (0.4 %, 2/487) in a Chinese SALS population suggests CHCHD10 gene mutation appears to be an uncommon cause of ALS in Chinese populations. CHCHD10 mutations are associated with a slow progression and long disease duration.  相似文献   

18.
To identify novel allelic variations in key genes of wheat quality, the present study used the targeting induced local lesions in genomes platform to detect point mutations in target genes. The wheat variety Longfumai 17 was treated by the mutagen ethyl methanesulfonate to produce a bulk M2 generation, and the population included 1122 plants. A total length of 3906.80 kb nucleotides was analyzed, and the average mutation density was 1/244.17 kb. The identified mutations included G>A substitutions (43.75%), C>T substitutions (31.25%), A insertions (12.50%), T insertions (6.25%), and deletions (6.25%). These point mutations led to changes in amino acids and thus the encoded protein sequences, ultimately producing 18.75% of missense mutations, 12.50% of frame shift mutations, 6.25% of nonsense mutations, 25.00% of silent mutations and 37.50% of non-coding region mutations. In the kernel hardness gene Pinb and 3 starch synthesis genes waxy, Agp2 and SSIIa-A, we detected 16 different point mutations in 25 mutant lines. The Pinb gene harbored two missense mutations and a nonsense mutation; the C>T missense mutation resulted in a novel allele, this novel allele and the nonsense mutation alerted protein 3D structure; the waxy gene presented missense and frame shift mutations; the Agp2 gene carried a missense mutation; the SSIIa-A incurred a missense mutation and a frame shift mutation that resulted in premature protein termination. All the frame shift mutations, nonsense mutations and the Pinb novel allele resulted in allelic variation of their corresponding genes, which in turn affected their gene functions. The identified mutant lines can be used as intermediate materials in wheat quality improvement schemes.  相似文献   

19.
20.
A study of Russian cystic fibrosis (CF) patient DNA was conducted to assess the incidence frequency of 19 mutations, namely CFTRdele2,3(21kb), F508del, I507del, 1677delTA, 2143delT, 2184insA, 394delTT, 3821delT, L138ins, 604insA, 3944delGT, G542X, W1282X, N1303K, R334W, and 3849 + 10kbC > T, S1196X, 621 + 1g > t, and E92K of the CFTR gene. We also sought to determine the estimated CF frequency in Russian Federation. In addition, we determined the total information content of the approach for 19 common mutations registration in the CFTR gene, 84.6%, and the allelic frequencies of the examined mutations: three mutations were observed with a frequency exceeding 5% (F508del, 53.98%, E92K, 6.47%, CFTRdele2,3(21kb), 5.35%); other mutations were observed with frequencies ranging from 0.13 to 3.0%. The CF population carrier frequency was 1 in 38 subjects, while the predicted CF frequency was 1 in 5776 newborns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号