首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.  相似文献   

2.
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.  相似文献   

3.
Point mutations in the 3'' minor domain of 16S rRNA of E.coli.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

4.
Initiation factor 3 (IF3) acts to switch the decoding preference of the small ribosomal subunit from elongator to initiator tRNA. The effects of IF3 on the 30 S ribosomal subunit and on the 30 S.mRNA. tRNA(f)(Met) complex were determined by UV-induced RNA crosslinking. Three intramolecular crosslinks in the 16 S rRNA (of the 14 that were monitored by gel electrophoresis) are affected by IF3. These are the crosslinks between C1402 and C1501 within the decoding region, between C967xC1400 joining the end loop of a helix of 16 S rRNA domain III and the decoding region, and between U793 and G1517 joining the 790 end loop of 16 S rRNA domain II and the end loop of the terminal helix. These changes occur even in the 30 S.IF3 complex, indicating they are not mediated through tRNA(f)(Met) or mRNA. UV-induced crosslinks occur between 16 S rRNA position C1400 and tRNA(f)(Met) position U34, in tRNA(f)(Met) the nucleotide adjacent to the 5' anticodon nucleotide, and between 16 S rRNA position C1397 and the mRNA at positions +9 and +10 (where A of the initiator AUG codon is +1). The presence of IF3 reduces both of these crosslinks by twofold and fourfold, respectively. The binding site for IF3 involves the 790 region, some other parts of the 16 S rRNA domain II and the terminal stem/loop region. These are located in the front bottom part of the platform structure in the 30 S subunit, a short distance from the decoding region. The changes that occur in the decoding region, even in the absence of mRNA and tRNA, may be induced by IF3 from a short distance or could be caused by the second IF3 structural domain.  相似文献   

5.
The conserved 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) interacts with helix 24 of 16S rRNA and also with helix 67 of 23S rRNA, forming the intersubunit bridge B2c, proximal to the decoding center. In previous studies, we investigated how the interaction between the 900 tetraloop and helix 24 participates in subunit association and translational fidelity. In the present study, we investigated whether the 900 tetraloop is involved in other undetected interactions with different regions of the Escherichia coli 16S rRNA. Using a genetic complementation approach, we selected mutations in 16S rRNA that compensate for a 900 tetraloop mutation, A900G, which severely impairs subunit association and translational fidelity. Mutations were randomly introduced in 16S rRNA, using either a mutagenic XL1-Red E. coli strain or an error-prone PCR strategy. Gain-offunction mutations were selected in vivo with a specialized ribosome system. Two mutations, the deletion of U12 and the U12C substitution, were thus independently selected in helix 1 of 16S rRNA. This helix is located in the vicinity of helix 27, but does not directly contact the 900 tetraloop in the crystal structures of the ribosome. Both mutations correct the subunit association and translational fidelity defects caused by the A900G mutation, revealing an unanticipated functional interaction between these two regions of 16S rRNA.  相似文献   

6.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

7.
A mechanistic understanding of ribosome function demands knowledge of the conformational changes that occur during protein synthesis. One current model proposes a conformational switch in Helix 27 (H27) of 16S rRNA involved in the decoding of mRNA. This model was based on the behavior of mutations in the 912 region of H27 of Escherichia coli 16S rRNA, which were predicted to stabilize the helix in either of two alternative conformations. This interpretation was supported by evidence from both genetics and structural biochemistry. However, recently published X-ray crystallographic structures of the Thermus thermophilus 30S subunit at different stages of tRNA selection have raised doubts regarding the validity of this model. We have therefore revisited the model genetically by constructing a H27 quadruple mutation (C912G, C910G, G885C, and G887C), which would create multiple mismatches in the proposed alternative conformation without perturbing the native H27 conformation seen in the crystal structures. Inconsistent with the H27 switch model, cells containing pure populations of quadruple mutant ribosomes grow at essentially wild-type rates. The mutants used to construct the H27 switch model all carried A2058G in 23S rRNA and C1192U in 16S rRNA as selectable markers. The quadruple mutant carrying these additional marker mutations is deleterious, and we conclude that they have a synergistic effect when combined with other mutations and are not phenotypically silent. Their presence confounded the interpretation of the original mutant phenotypes and, in light of the viability of the quadruple mutant, we conclude that the genetic evidence no longer supports the model.  相似文献   

8.
16S ribosomal RNA contains three highly conserved single-stranded regions. Centrally located in one of these regions is the C1400 residue. Zero-length cross-linking of this residue to the anticodon of ribosome-bound tRNA showed that it was at or near the ribosomal decoding site [Ehresmann, C., Ehresmann, B., Millon, R., Ebel, J-P., Nurse, K., & Ofengand, J. (1984) Biochemistry 23, 429-437]. To assess the functional significance of sequence conservation of rRNA in the vicinity of this functionally important site, a series of site-directed mutations in this region were constructed and the effects of these mutations on the partial reactions of protein synthesis determined. Mutation of C1400 or C1402 to any other base only moderately affected a set of in vitro protein synthesis partial reactions. However, any base change from the normal G1401 residue blocked all of the tested ribosomal functions. This was also true for the deletion of G1401. Deletion of C1400 or C1402 had more complex effects. Whereas subunit association was hardly affected, 30S initiation complex formation was blocked by deletion of C1400 but much less so by deletion of C1402. Alternatively, tRNA binding to the ribosomal A site was more strongly affected by deletion of C1402 than by deletion of C1400. P site binding was inhibited by either deletion. HPLC analysis of the in vitro reconstituted mutant ribosomes showed that none of the functional effects were due to the absence or gross reduction in amount of any ribosomal protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The A-minor interaction, formed between single-stranded adenosines and the minor groove of a receptor helix, is among the most common motifs found in rRNA. Among the A-minors found in 16S rRNA are a set of interactions between adenosines at positions 1433, 1434 and 1468 in helix 44 (h44) and their receptors in the nucleotide 320-340 region of helix 13 (h13). These interactions have been implicated in the maintenance of translational accuracy, because base substitutions at the adjacent C1469 increase miscoding errors. We have tested their functional significance through mutagenesis of h13 and h44. Mutations at the h44 A residues, or the A-minor receptors in h13, increase a variety of translational errors and a subset of the mutants show decreased association between 30S and 50S ribosomal subunits. These results are consistent with the involvement of h13-h44 interactions in the alignment and packing of these helices in the 30S subunit and the importance of this helical alignment for tRNA selection and subunit-subunit interaction.  相似文献   

10.
Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally crowded stretch of the rRNA sequence. Here, we show that the Sgm methyltransferase confers resistance to 4,6-disubstituted deoxystreptamine aminoglycosides by introducing the 16S rRNA modification m7G1405 within the ribosomal A site. This region of Escherichia coli 16S rRNA already contains several methylated nucleotides including m4Cm1402 and m5C1407. Modification at m5C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance, is less able to interfere with RsmF methylation on the 30S subunit. The two methylations at 16S rRNA nucleotide m4Cm1402 are unaffected by both the wild-type and the mutant versions of Sgm. The data indicate that interplay between resistance methyltransferases and the cell''s own indigenous methyltransferases can play an important role in determining resistance levels.  相似文献   

11.
Initiation of translation involves recognition of the start codon by the initiator tRNA in the 30S subunit. To investigate the role of ribosomal RNA (rRNA) in this process, we isolated a number of 16S rRNA mutations that increase translation from the non-canonical start codon AUC. These mutations cluster to distinct regions that overlap remarkably well with previously identified class III protection sites and implicate both IF1 and IF3 in start codon selection. Two mutations map to the 790 loop and presumably act by inhibiting IF3 binding. Another cluster of mutations surrounds the conserved A1413∘G1487 base pair of helix 44 in a region known to be distorted by IF1 and IF3. Site-directed mutagenesis in this region confirmed that this factor-induced rearrangement of helix 44 helps regulate initiation fidelity. A third cluster of mutations maps to the neck of the 30S subunit, suggesting that the dynamics of the head domain influences translation initiation. In addition to identifying mutations that decrease fidelity, we found that many P-site mutations increase the stringency of start codon selection. These data provide evidence that the interaction between the initiator tRNA and the 30S P site is tuned to balance efficiency and accuracy during initiation.  相似文献   

12.
13.
The ribosome is the main target for antibiotics that inhibit protein biosynthesis. Despite the chemical diversity of the known antibiotics that affect functions of the large ribosomal subunit, these drugs act on only a few sites corresponding to some of the known functional centers. We have used a genetic approach for identifying structurally and functionally critical sites in the ribosome that can be used as new antibiotic targets. By using randomly mutagenized rRNA genes, we mapped rRNA sites where nucleotide alterations impair the ribosome function or assembly and lead to a deleterious phenotype. A total of 77 single-point deleterious mutations were mapped in 23 S rRNA and ranked according to the severity of their deleterious phenotypes. Many of the mutations mapped to familiar functional sites that are targeted by known antibiotics. However, a number of mutations were located in previously unexplored regions. The distribution of the mutations in the spatial structure of the ribosome showed a strong bias, with the strongly deleterious mutations being mainly localized at the interface of the large subunit and the mild ones on the solvent side. Five sites where deleterious mutations tend to cluster within discrete rRNA elements were identified as potential new antibiotic targets. One of the sites, the conserved segment of helix 38, was studied in more detail. Although the ability of the mutant 50 S subunits to associate with 30 S subunits was impaired, the lethal effect of mutations in this rRNA element was unrelated to its function as an intersubunit bridge. Instead, mutations in this region had a profound deleterious effect on the ribosome assembly.  相似文献   

14.
The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.  相似文献   

15.
Ribosomal protein S20 is a primary binding protein that bridges the 5′ domain and the 3′ minor domain of the 16S ribosomal RNA (rRNA) in the 30S ribosomal subunit. Using time-dependent dimethyl sulfate modification, we have determined that as it is bound to 16S rRNA, protein S20 causes rapid protection of bases A246, A274, A279, and A282 in the stem region of helix 11 in the 5′ domain and moderately fast modifications of helix 44 bases A1433 and A1434 in the 3′ minor domain. At a later time, enhancements occur with bases A181and A190 in helix 9, bases A325 and A327 in helix 13, and base C264 at the distal end of helix 11 in the 5′ domain of 16S rRNA. The modifications that occur in the stem region of helix 11 are distant from the binding site of protein S20, as determined from the crystal structure. Simultaneous addition of protein S17 with S20 to the complex significantly alters the modifications caused by protein S20 in the stem region of helix 11 but does not alter the remaining modifications. Our results indicate that protein S20 is binding to at least two alternate 16S rRNA sites during the early assembly process.  相似文献   

16.
To examine the function of the central pseudoknot in 16S rRNA, we have studied Escherichia coli 30S subunits with the A18 mutation in this structure element. Previously, this mutation, which changes the central base pair of helix 2, C18--G917, to an A18xG917 mismatch, was shown to inhibit translation in vivo and a defect in initiation was suggested. Here, we find that the mutant 30S particles are impaired in forming 70S tight couples and predominantly accumulate as free 30S subunits. Formation of a 30S initiation complex, as measured by toeprinting, was almost as efficient for mutant 30S subunits, derived from the tight couple fraction, as for the wild-type control. However, the A18 mutation has a profound effect on the overall stability of the subunit. The mutant ribosomes were inactivated by affinity chromatography and high salt treatment, due to easy loss of ribosomal proteins. Accordingly, the particles could be reactivated by partial in vitro reconstitution with 30S ribosomal proteins. Mutant 30S subunits from the free subunit fraction were already inactive upon isolation, but could also be reactivated by reconstitution. Apparently, the inactivity in initiation of these mutant 30S subunits is, at least in part, also due to the lack of essential ribosomal proteins. We conclude that disruption of helix 2 of the central pseudoknot by itself does not affect the formation of a 30S initiation complex. We suggest that the in vivo translational defect of the mutant ribosomes is caused by their inability to form 70S initiation complexes.  相似文献   

17.
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.  相似文献   

18.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

19.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

20.
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号