首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.  相似文献   

2.
Kaposi''s sarcoma (KS) is an AIDS-defining cancer with aberrant neovascularization caused by KS-associated herpesvirus (KSHV). Although the interaction between HIV-1 and KSHV plays a pivotal role in promoting the aggressive manifestations of KS, the pathogenesis underlying AIDS-KS remains largely unknown. Here we examined HIV-1 Nef protein promotion of KSHV oncoprotein K1-induced angiogenesis. We showed that both internalized and ectopic expression of Nef in endothelial cells synergized with K1 to facilitate vascular tube formation and cell proliferation, and enhance angiogenesis in a chicken CAM model. In vivo experiments further indicated that Nef accelerated K1-induced angiogenesis and tumorigenesis in athymic nu/nu mice. Mechanistic studies revealed that Nef and K1 synergistically activated PI3K/AKT/mTOR signaling by downregulating PTEN. Furthermore, Nef and K1 induced cellular miR-718, which inhibited PTEN expression by directly targeting a seed sequence in the 3′ UTR of its mRNA. Inhibition of miR-718 expression increased PTEN synthesis and suppressed the synergistic effect of Nef- and K1-induced angiogenesis and tumorigenesis. These results indicate that, by targeting PTEN, miR-718 mediates Nef- and K1-induced angiogenesis via activation of AKT/mTOR signaling. Our results demonstrate an essential role of miR-718/AKT/mTOR axis in AIDS-KS and thus may represent an attractive therapeutic target.  相似文献   

3.
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.  相似文献   

4.
Activation of the phosphoinositide 3-kinase pathway is commonly observed in human prostate cancer. Loss of function of phosphatase and tensin homolog (PTEN) is associated with the activation of AKT and mammalian target of rapamycin (mTOR) in many cancer cell lines as well as in other model systems. However, activation of mTOR is also dependent of kinases other than AKT. Here, we show that activation of mTOR is not dependent on AKT in a prostate-specific PTEN-deficient mouse model of prostate cancer. Pathway bifurcation of AKT and mTOR was noted in both mouse and human prostate tumors. We demonstrated for the first time that cotargeting mTOR and AKT with ridaforolimus/MK-8669 and M1K-2206, respectively, delivers additive antitumor effects in vivo when compared to single agents. Our preclinical data suggest that the combination of AKT and mTOR inhibitors might be more effective in treating prostate cancer patients than current treatment regimens or either treatment alone.  相似文献   

5.
The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities.  相似文献   

6.
BackgroundAtractylenolide I (ATL-1) is a natural herbal compound used in traditional Chinese medicine that has exhibited anti-cancer properties. The anti-tumorigenic activity of ATL-1 against colorectal cancer (CRC) and the underlying signaling pathways involved in its mechanisms are examined here.HypothesisATL-1 exerts therapeutic effect against CRC by disrupting glucose metabolism and cancer stem cell maintenance via AKT/mTOR pathway regulation.Study designIn vitro studies were performed in COLO205 and HCT116 CRC cell lines and in vivo studies were conducted in a mouse xenograft model of CRC tumor.MethodsCRC cells were treated with ATL-1 at various concentrations, with or without inhibitors of AKT or mTOR. Cell proliferation, apoptosis, invasion, stemness maintenance, glucose metabolism, and AKT/mTOR signaling were evaluated. CRC tumor-xenografted mice were treated with an AKT inhibitor and/or ATL-1, and glucose metabolism and stemness maintenance were examined in tumor tissues.ResultsATL-1 significantly inhibited the invasion of CRC cells by inducing their apoptosis, possibly via the excessive production of reactive oxygen species. Glucose metabolism (Warburg effect) was also altered and stem-like traits were suppressed by ATL-1. In addition, ATL-1 effectively acted as an inhibitor or AKT/mTOR by downregulating the phosphorylation of proteins related to the AKT/mTOR pathway. In vivo studies showed that tumor weight and volume were reduced by ATL-1 and that aerobic glycolysis, stemness maintenance, and AKT/mTOR activation were impaired by ATL-1 in colorectal tumors.ConclusionsATL-1 acts as an effective agent to suppress colorectal tumor progression, mainly by inhibiting CRC cell proliferation through altering apoptosis, glucose metabolism, and stem-like behavior. These processes were mediated by the AKT/mTOR signaling pathway both in vitro and in vivo. ATL-1 may be a potential agent to be used in molecular-targeted strategies for cancer treatment.  相似文献   

7.
Quercetin and 2-Methoxyestradiol (2-ME) are promising anti-cancer substances. Our previous in vitro study showed that quercetin synergized with 2-Methoxyestradiol exhibiting increased antiproliferative and proapoptotic activity in both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cell lines. In the present study, we determined whether their combination could inhibit LNCaP and PC-3 xenograft tumor growth in vivo and explored the underlying mechanism. Human prostate cancer LNCaP and PC-3 cells were inoculated subcutaneously in male BALB/c nude mice. When xenograft tumors reached about 100 mm3, mice were randomly allocated to vehicle control, quercetin or 2-Methoxyestradiol singly treated and combination treatment groups. After therapeutic intervention for 4 weeks, combination treatment of quercetin and 2-ME i) significantly inhibited prostate cancer xenograft tumor growth by 46.8% for LNCaP and 51.3% for PC-3 as compared to vehicle control group, more effective than quercetin (28.4% for LNCaP, 24.8% for PC3) or 2-ME (32.1% for LNCaP, 28.9% for PC3) alone; ii) was well tolerated by BALB/c mice and no obvious toxic reactions were observed; iii) led to higher Bax/Bcl-2 ratio, cleaved caspase-3 protein expression and apoptosis rate; and iv) resulted in lower phosphorylated AKT (pAKT) protein level, vascular endothelial growth factor protein and mRNA expression, microvascular density and proliferation rate than single drug treatment. These effects were more remarkable compared to vehicle group. Therefore, combination of quercetin and 2-ME can serve as a novel clinical treatment regimen owning the potential of enhancing antitumor effect on prostate cancer in vivo and lessening the dose and side effects of either quercetin or 2-ME alone. These in vivo results will lay a further solid basis for subsequent researches on this novel therapeutic regimen in human prostate cancer.  相似文献   

8.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

9.
Excessive generation of reactive oxygen species (ROS) in cancer cells is associated with cancer development, but the underlying mechanisms and therapeutic significance remain elusive. In this study, we reported that levels of ROS and p22phox expression are greatly increased in human prostate cancer tissues, and knockdown of p22phox by specific small interfering RNA (siRNA) decreased ROS levels in prostate cancer cells. We also showed that stable downregulation of p22phox in prostate cancer cells inhibited cell proliferation and colony formation, which was mediated by AKT and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and their downstream molecules hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). The NADPH oxidase subunit NOX1 was also elevated in prostate cancer cells, and was involved in activation of AKT/ERK/HIF-1/VEGF pathway and regulation of cell proliferation. Knockdown of p22phox resulted in inhibition of tumor angiogenesis and tumor growth in nude mice. These findings reveal a new function of p22phox in tumor angiogenesis and tumor growth, and suggest that p22phox is a potential novel target for prostate cancer treatment.  相似文献   

10.
11.
Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis‐dependent diseases including cancer. We examined the cytotoxic, anti‐metastatic, anti‐cancer and anti‐angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases‐2, ‐7 and ‐9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary‐like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex‐vivo angiogenesis. We investigated the anti‐tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti‐angiogenic activity in vivo. In this in‐vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS.  相似文献   

12.
13.
《Cellular signalling》2014,26(7):1506-1513
Human γ-aminobutyrate type A (GABAA) receptor-binding protein (GABARBP), a tumor suppressor protein with apoptotic function, can be inhibited in response to angiogenesis through the PI3K/Akt signaling cascades. Here, we investigated whether GABARBP over-expression could regulate vascular endothelial growth factor (VEGF)/hypoxia-inducible factor-1α (HIF-1α) expression and angiogenic activity in a carcinoma model system. GABARBP dramatically inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation, as well as VEGFR-2 phosphorylation in vitro. At the same time, GABARBP exposed potent anti-angiogenic activity and remarkably down-regulated the levels of VEGF and HIF-1α protein expression, key components for angiogenesis. In addressing its biological molecular mechanism, GABARBP was found to effectively inhibit the phosphorylation of down-stream PI3K components, such as PDK1, Akt, mTOR, TSC-2, p70S6K, and 4E-BP1 by directly binding with VEGFR-2. In contrast, p38/JNK phosphorylation was not suppressed by GABARBP. These findings disclose a novel function of GABARBP in suppressing VEGF and HIF-1α protein expression, which is important for tumor angiogenesis and tumor growth. Thus, our data strongly provides novel biological mechanistic insights into the regulatory function of GABARBP in ovarian tumor progression, and the important of pre-clinical certification of GABARBP as a potential angiogenesis agent targeting ovarian tumorigenesis.  相似文献   

14.
15.
Adenosine monophosphate-activated protein kinase (AMPK) acts as a major sensor of cellular energy status in cancers and is critically involved in cell sensitivity to anticancer agents. Here, we showed that AMPK was inactivated in lymphoma and related to the upregulation of the mammalian target of rapamycin (mTOR) pathway. AMPK activator metformin potentially inhibited the growth of B- and T-lymphoma cells. Strong antitumor effect was also observed on primary lymphoma cells while sparing normal hematopoiesis ex vivo. Metformin-induced AMPK activation was associated with the inhibition of the mTOR signaling without involving AKT. Moreover, lymphoma cell response to the chemotherapeutic agent doxorubicin and mTOR inhibitor temsirolimus was significantly enhanced when co-treated with metformin. Pharmacologic and molecular knock-down of AMPK attenuated metformin-mediated lymphoma cell growth inhibition and drug sensitization. In vivo, metformin induced AMPK activation, mTOR inhibition and remarkably blocked tumor growth in murine lymphoma xenografts. Of note, metformin was equally effective when given orally. Combined treatment of oral metformin with doxorubicin or temsirolimus triggered lymphoma cell autophagy and functioned more efficiently than either agent alone. Taken together, these data provided first evidence for the growth-inhibitory and drug-sensitizing effect of metformin on lymphoma. Selectively targeting mTOR pathway through AMPK activation may thus represent a promising new strategy to improve treatment of lymphoma patients.  相似文献   

16.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

17.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

18.
Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety. Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting HIF-1α (Hypoxia inducible factor-1α) proteasome degradation and directly interacted with VEGFR-2 to block its kinase activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization against breast cancer are thus warranted.  相似文献   

19.
Multiple studies have shown that protein kinase Bβ (AKT2) is involved in the development and progression of ovarian cancer, however, its precise role remains unclear. Here we explored the underlying molecular mechanisms how AKT2 promotes ovarian cancer progression. We examined the effects of AKT2 in vitro in two ovarian cancer cell lines (SKOV3 and HEY), and in vivo by metastasis assay in nude mice. The migration and invasion ability of SKOV3 and HEY cells was determined by transwell assay. Overexpression and knockdown (with shRNA) experiments were carried out to unravel the underlying signaling mechanisms induced by AKT2. Overexpression of AKT2 led to increased expression of pyruvate kinase (PKM2) in ovarian cancer cells and in lung metastatic foci from nude mice. Elevated AKT2/PKM2 expression induced cell migration and invasion in vitro, as well as lung metastasis in vivo; silencing AKT2 blocked these effects. Meanwhile, PKM2 overexpression was unable to increase AKT2 expression. The expressions of p-PI3K, p-AKT2, and PKM2 were increased when stimulated by epidermal growth factor (EGF); however, these expressions were blocked when inhibited the PI3K by LY294002. STAT3 expression was elevated and NF-κB p65 nuclear translocation was activated both in vitro and in vivo when either AKT2 or PKM2 was overexpressed; and these effects were inhibited when silencing AKT2 expression. Taken together, AKT2 increases the migration and invasion of ovarian cancer cells in vitro and promotes lung metastasis in nude mice in vivo through PKM2-mediated elevation of STAT3 expression and NF-κB activation. In conclusion, we highlight a novel mechanism of the AKT2-PKM2-STAT3/NF-κB axis in the regulation of ovarian cancer progression, and our work suggested that both AKT2 and PKM2 may be potential targets for the treatment of ovarian cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号