首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Streptococcus pneumoniae is a major cause of pneumonia, sepsis and meningitis. The pore-forming toxin pneumolysin is a key virulence factor of S. pneumoniae, which can be sensed by the NLRP3 inflammasome. Among the over 90 serotypes, serotype 1 pneumococci (particularly MLST306) have emerged across the globe as a major cause of invasive disease. The cause for its particularity is, however, incompletely understood. We therefore examined pneumococcal infection in human cells and a human lung organ culture system mimicking infection of the lower respiratory tract. We demonstrate that different pneumococcal serotypes differentially activate inflammasome-dependent IL-1β production in human lung tissue and cells. Whereas serotype 2, 3, 6B, 9N pneumococci expressing fully haemolytic pneumolysins activate NLRP3 inflammasome-dependent responses, serotype 1 and 8 strains expressing non-haemolytic toxins are poor activators of IL-1β production. Accordingly, purified haemolytic pneumolysin but not serotype 1-associated non-haemolytic toxin activates strong IL-1β production in human lungs. Our data suggest that the evasion of inflammasome-dependent innate immune responses by serotype 1 pneumococci might contribute to their ability to cause invasive diseases in humans.  相似文献   

2.
Pneumonia causes about three million deaths a year in young children, nearly all of which are in developing countries. Streptococcus pneumoniae (the pneumococcus) is the most important bacterial cause of pneumonia in young children and so is likely to be responsible for a high proportion of these deaths. The pneumococcus is also responsible for a substantial proportion of the 100,000-500,000 deaths that occur from meningitis in children each year. The incidence of invasive pneumococcal disease in children in the developing world is several times higher than in industrialized countries. This discrepancy may, in part, be due to socio-economic differences but genetic factors may also play a role. Children with sickle cell disease have a substantially increased risk of invasive pneumococcal infection and a search is being made for other possible genetic risk factors. Infection with human immunodeficiency virus (HIV) also predisposes to invasive pneumococcal disease and so the incidence of this disease in young children is expected to rise as increasing numbers of African and Asian children are born with a perinatally acquired HIV infection. Until recently, pneumococcal infections could be treated effectively with penicillin, a cheap and safe antibiotic. However, pneumococci that are resistant to penicillin are becoming prevalent in many countries, necessitating a change to more costly antibiotics which may be beyond the reach of the health services of poor, developing countries. The spread of antibiotic resistance has provided an added stimulus to the development of vaccines that might be able to prevent pneumococcal disease in infants. Recently developed polysaccharide-protein conjugate vaccines show promise and are now undergoing field trials. How deployment of these vaccines will influence the balance between invasive pneumococcal infections and asymptomatic nasopharyngeal carriage of pneumococci is uncertain.  相似文献   

3.
The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.  相似文献   

4.
During the 7-year period of observation (1982-1988) the serotypes of 276 pneumococcal strains isolated from children with chronic bronchopulmonary diseases were studied. Among the serotypes of pneumococci under study, serotypes 6, 19 and 15 held the leading place and included a half of all typed pneumococci. Dynamic observation on the serotype composition of pneumococci revealed periodic fluctuations in the occurrence of some types/groups. The regional analysis of different serotypes of pneumococci showed the common occurrence of serogroups 6 and 19, as well as some regional features in the circulation of serotypes 6, 10, 3 and rarely occurring serotypes. The study revealed that any new exacerbation of the chronic bronchopulmonary process is caused by pneumococci of some other serotype. Pneumococcal strains, resistant (3.4%) and sensitive (1.8%) to penicillin, were detected; most of them belonged to serogroup 19.  相似文献   

5.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

6.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

7.
We used a rabbit model to assess the effects of capsular serotype, genetic background and beta-lactam resistance on the course and severity of experimental meningitis. Meningitis was induced by five pneumococcal strains belonging to five different clones with known invasive potential: two serotype 3 strains (ST260(3) and Netherlands(3)-31 clones) and three serotype 23F strains with different beta-lactam susceptibility patterns (Spain(23F)-1 clone, Tennessee(23F)-4 clone and a double locus variant of the Tennessee(23F)-4 clone). Major differences in secondary bacteremia and mortality rates were observed between serotypes 3 and 23F, as were divergences in the CSF lactate, protein and lipoteichoic-teichoic acid concentrations. Minor differences in the CSF-induced inflammatory response were found among strains belonging to the same serotype. Our results suggest that capsular serotype might be the main factor determining the course and severity of pneumococcal meningitis and genetic background contributes to a lesser extent. The acquisition of beta-lactam resistance does not reduce the virulence of the invasive clones. Since five strains belonging to two serotypes were studied, our findings have to be confirmed with other pneumococcal serotypes.  相似文献   

8.
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.  相似文献   

9.
The use of the complex system of the biotechnological parameters of cultivation processes permitted the subdivision of the strains belonging to 16 pneumococcal serotypes under study into two groups. The strains characterized by direct relationship between the constructive and energetic parameters of the cultivation process, the faintly pronounced capsule and low virulence are classified with group 1. The characteristic features classified with group 2 were the inverse relationship between the constructive and energetic parameters, intensive capsule formation and higher virulence. The comparative analysis of the strain of serotype 3 and its noncapsular form revealed that the strain showed the loss of virulence and an increase in the energy parameters of the cultivation process.  相似文献   

10.
Several proteins, in addition to the polysaccharide capsule, have recently been implicated in the full virulence of the Streptococcus pneumoniae bacterial pathogen. One of these novel virulence factors of S. pneumoniae is pneumococcal surface protein A (PspA). The N-terminal, cell surface exposed, and functional part of PspA is essential for full pneumococcal virulence, as evidenced by the fact that antibodies raised against this part of the protein are protective against pneumococcal infections. PspA has recently been implicated in anti-complementary function as it reduces complement-mediated clearance and phagocytosis of pneumococci. Several recombinant N-terminal fragments of PspA from different strains of pneumococci, Rx1, BG9739, BG6380, EF3296, and EF5668, were analyzed using circular dichroism, analytical ultracentrifugation sedimentation velocity and equilibrium methods, and sequence homology. Uniformly, all strains of PspA molecules studied have a high alpha-helical secondary structure content and they adopt predominantly a coiled-coil structure with an elongated, likely rod-like shape. No beta-sheet structures were detected for any of the PspA molecules analyzed. All PspAs were found to be monomeric in solution with the exception of the BG9739 strain which had the propensity to partially aggregate but only into a tetrameric form. These structural properties were correlated with the functional, anti-complementary properties of PspA molecules based on the polar distribution of highly charged termini of its coiled-coil domain. The recombinant Rx1 PspA is currently under consideration for pneumococcal vaccine development.  相似文献   

11.
12.
The partial genome sequences of a serotype 3 and a serotype 2 pneumococcal strain were compared to the complete type 4 pneumococcal genome. Over 500000 and 150000 base pairs of the partial genome data, obtained from published patents, were analysed respectively. Global alignment showed that nearly the whole genome is highly conserved in accordance with data of multilocus sequence typing of housekeeping genes. The search for clone-specific genes revealed 17 new open reading frames in the type 3 strain, while no new open reading frame was detected in the type 2 strain. Allelic variation of genes was restricted by the use of crude sequence data, but still permitted identification of some new alleles and the observation that all surface proteins present in the partial genome data were highly conserved. In both strains we observed also a variety of chromosomal rearrangements and variations due to mobile genetic elements. All together, this comparative genomic approach gives a genome-based overview of strain relatedness and a prospective on what could be expected when sequencing other pneumococcal strains.  相似文献   

13.
The resurgence of enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. The southern Indian state of Kerala is endemic to cholera. A V. cholerae strain isolated from the stool sample of a patient in Piravam, Kerala, South India, was analysed. However, this case occurred at a time not associated with cholera outbreaks, leading to concern among the State health officials. We compared the virulence potential of the isolate with that of the standard or reference strains, that have been widely used as positive control. The isolate was identified as V. cholerae O1 biotype El Tor serotype Inaba. The resistance pattern of the isolate to common antibiotics was examined and it was found to be multi-drug resistant in nature. The strain was analysed for the presence of the CTX genetic element, which encodes genes for cholera toxin and other important regulatory genes. It was found to be positive for all the genes tested. In Kerala, most of the cholera outbreaks have been reported to be caused by V. cholerae O1 El Tor belonging to Ogawa serotype. Interestingly, the V. cholerae strain isolated from this case has been found to be of Inaba serotype, which is rarely reported.  相似文献   

14.
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.  相似文献   

15.
The ZmpC zinc metalloproteinase of Streptococcus pneumoniae, annotated in the type 4 genome as SP0071, was found to cleave human matrix metalloproteinase 9 (MMP-9). The previously described IgA protease activity was confirmed to be specifically linked to the IgA1-protease/SP1154 zinc metalloproteinase. MMP-9 is a protease cleaving extracellular matrix gelatin and collagen and is activated by proteolytic cleavage like most proteases. MMP-9 is a human protease and is involved in a variety of physiological and pathological matrix degrading processes, including tissue invasion of metastases and opening of the blood-brain barrier. While TIGR4 (serotype 4) and G54 (serotype 19) pneumococcal genome strains have a highly conserved copy of zmpC, the genome of R6 (a derivative of serotype 2 D39 strain) lacks zmpC. Both the analysis for zmpC presence and MMP-9 cleavage activity in various pneumococcal strains showed correlation of ZmpC with MMP-9 cleavage activity. When assaying clinical isolates of S. pneumoniae, the zmpC gene was not found in any of the nasal and conjunctival swab isolates, but it was present in 1 out of 13 meningitis isolates and in 6 out of 11 pneumonia isolates. In a murine pneumonia model, infection with a zmpC-mutant reduced mortality at 3-4 days post-infection by 75%, when compared with infection with wild-type strains. These data indicate that the ZmpC pneumococcal protease may play a role in pneumococcal virulence and pathogenicity in the lung.  相似文献   

16.
The biological properties of 97 S. pneumoniae strains isolated from 92 children with purulent meningitides, meningoencephalitides, pneumonia and otitis, hospitalized at the Leningrad Research Institute of Childhood Infections, were studied. The data obtained in this investigation were indicative of the formation of atypical forms of pneumococci (R-forms, unbalanced growth forms and L-forms) in all clinical forms of pneumococcal infection in children. In purulent meningitides and meningoencephalitides serovars 1 and 6, in pneumonia serovars 1, 3 and 6 and in otitis serovars 6 and 19 played the leading role. The determination of sensitivity to antibiotics showed that the forms under study retained high sensitivity to a number of antibiotics. The appearance of strains resistant to benzylopenicillin was registered. (10%). The isolated strains either possessed low virulence or were avirulent in bioassay on white mice.  相似文献   

17.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.  相似文献   

18.
Vancomycin is frequently added to standard therapy for pneumococcal meningitis. Although vancomycin‐resistant Streptococcus pneumoniae strains have not been isolated, reports on the emergence of vancomycin‐tolerant pneumococci are a cause of concern. To date, the molecular basis of vancomycin tolerance in S. pneumoniae is essentially unknown. We examined two vancomycin‐tolerant clinical isolates, i.e. a purported autolysin negative (LytA), serotype 23F isolate (strain S3) and the serotype 14 strain ‘Tupelo’, which is considered a paradigm of vancomycin tolerance. S3 was characterized here as carrying a frameshift mutation in the lytA gene encoding the main pneumococcal autolysin. The vancomycin tolerance of strain S3 was abolished by transformation to the autolysin‐proficient phenotype. The original Tupelo strain was discovered to be a mixture: a strain showing a vancomycin‐tolerant phenotype (Tupelo_VT) and a vancomycin‐nontolerant strain (Tupelo_VNT). The two strains differed only in terms of a single mutation in the ciaH gene present in the VT strain. Most interestingly, although the vancomycin tolerance of Tupelo_VT could be overcome by increasing the LytA dosage upon transformation by a multicopy plasmid or by externally adding the autolysin, we show that vancomycin tolerance in S. pneumoniae requires the simultaneous presence of a mutated CiaH histidine kinase and capsular polysaccharide.  相似文献   

19.
A Shiga-toxin-producing Escherichia coli (STEC) strain belonging to serotype O104:H4, phylogenetic group B1 and sequence type ST678, with virulence features common to the enteroaggregative E. coli (EAEC) pathotype, was reported as the cause of the recent 2011 outbreak in Germany. The outbreak strain was determined to carry several virulence factors of extraintestinal pathogenic E. coli (ExPEC) and to be resistant to a wide range of antibiotics. There are only a few reports of serotype O104:H4, which is very rare in humans and has never been detected in animals or food. Several research groups obtained the complete genome sequence of isolates of the German outbreak strain as well as the genome sequences of EAEC of serotype O104:H4 strains from Africa. Those findings suggested that horizontal genetic transfer allowed the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli (STEAEC) O104:H4 strain responsible for the outbreak in Germany. Epidemiologic investigations supported a linkage between the outbreaks in Germany and France and traced their origin to fenugreek seeds imported from Africa. However, there has been no isolation of the causative strain O104:H4 from any of the samples of fenugreek seeds analyzed. Following the German outbreak, we conducted a large sampling to analyze the presence of STEC, EAEC, and other types of diarrheagenic E. coli strains in Spanish vegetables. During June and July 2011, 200 vegetable samples from different origins were analyzed. All were negative for the virulent serotype O104:H4 and only one lettuce sample (0.6%) was positive for a STEC strain of serotype O146:H21 (stx1, stx2), considered of low virulence. Despite the single positive case, the hygienic and sanitary quality of Spanish vegetables proved to be quite good. In 195 of the 200 samples (98%), <10 colony-forming units (cfu) of E. coli per gram were detected, and the microbiological levels of all samples were satisfactory (<100 cfu/g). The samples were also negative for other pathotypes of diarrheagenic E. coli (EAEC, ETEC, tEPEC, and EIEC). Consistent with data from other countries, STEC belonging to serotype O157:H7 and other serotypes have been isolated from beef, milk, cheese, and domestic (cattle, sheep, goats) and wild (deer, boar, fox) animals in Spain. Nevertheless, STEC outbreaks in Spain are rare.  相似文献   

20.
以来自哈尔滨传染性法氏囊病病毒(IBDV) 强毒株(Harbin 毒株,H) 的基因组RNA为模板,用反转录聚合酶链反应(RT- PCR) 的方法得到了其A 节段的全长cDNA 片段,分5'端(1 659bp) 和3'端(1 444bp) 上下两段分别克隆到pGEMB○R - T 载体上,测定了其核苷酸顺序,在长为3 101 bp 中含有两个阅读框ORFA1 和ORFA2 ,分别编码1 012 个氨基酸的前体蛋白(VP2 - 4 -3) 和145 个氨基酸的VP5,ORFA1 和ORFA2 有部分的重叠。将核苷酸序列及推测出的氨基酸序列与已报道的IBDV 血清Ⅰ型和Ⅱ型毒株的相应序列进行了比较,结果表明:H 毒株与其它血清Ⅰ型毒株之间,在核苷酸水平上存在25bp - 267bp 的差异;在氨基酸水平上存在17 ~40 个氨基酸的差异。在VP2 - 4 - 3 内比较显示,H 毒株与P2 、Cu- 1 之间氨基酸的差异最小为1 .7% ,H 毒株与UK661 之间氨基酸的差异最大为3 .9 % 。变异主要发生在VP2 的可变区(206 - 350 位氨基酸) ,在H 毒株所特有的12 个氨基酸当中,该区就占5 个,代表1 .76 % 的变异。VP4、VP3 和VP5区各有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号