首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is a fact that molecular imprinting techniques have reached tremendous importance in the research of new artificial recognition systems. These methods resemble the mechanism of natural recognition, generally based on non-covalent interactions, but improving their stability by means of a simple and inexpensive technique. Molecular imprinting polymers (MIPs) are easily obtained by copolymerisation of suitable functional monomers and crosslinkers in the presence of the print molecule. Removal of the template leaves a polymer that selectively recognises it. In this work, different imprinted polymers for chloramphenicol (CAP) obtained using different monomers and polymerisation conditions were tested in a HPLC system, in order to obtain a highly selective material for CAP. The optimised MIP was then used as recognition phase in a fluorescent competitive flow assay to determine chloramphenicol.  相似文献   

2.
Polymers imprinted with sucrose and corresponding non-imprinted polymers are prepared photo-chemically at 3 °C and thermally at 65 °C. The pre-polymerization complex formation in dimethyl sulfoxide between sucrose and methacrylic acid via hydrogen bonding was investigated through 1H NMR titration. The imprinting effect and the selectivity of the imprinted polymers in water are studied by batch rebinding studies with different mono and disaccharides and fitted to the Freundlich isotherm. Based on the calculated numbers of binding sites and average affinity, it is concluded that sucrose has been successfully imprinted at 3 and 65 °C. The polymer imprinted at 3 °C possesses the best recognition properties. The imprinted polymers are selective towards sucrose in water.  相似文献   

3.
A strategy for arranging two porphyrin moieties in a face-to-face fashion in polymeric material was demonstrated by molecular imprinting, whereby porphyrin Zn(II) complex monomers were cross-linked with ethylene glycol dimethacrylate in the presence of pyrazine or 1,5-naphthyridine as a template molecule. In chromatographic studies using the resultant imprinted polymers as stationary phase, both the polymers showed selectivity for the original template molecule, suggesting that two zinc porphyrin moieties were immobilized in the face-to-face fashion, and were center-aligned for pyrazine recognition and offset-arranged for 1,5-naphthyridine recognition. The imprinted polymer with porphyrin moieties also showed a decrease in its fluorescence intensity in response to the concentration of the target molecule, suggesting the potential utility as sensing material.  相似文献   

4.
分子印迹技术研究新进展   总被引:3,自引:0,他引:3  
分子印迹技术是在近十几年来才发展起来的一门边缘科学技术。它结合了高分子化学、生物化学等学科 ,是模拟抗体 -抗原相互作用的一种新技术 ,具有选择性识别位点的性质。现已应用于色谱分离、抗体和受体模拟物、固相萃取、生物传感器等领域。  相似文献   

5.
A new technique for coating microtitre plates with molecularly imprinted polymers (MIP), specific for low-molecular weight analytes (epinephrine, atrazine) and proteins is presented. Oxidative polymerization was performed in the presence of template; monomers: 3-aminophenylboronic acid (APBA), 3-thiopheneboronic acid (TBA) and aniline were polymerized in water and the polymers were grafted onto the polystyrene surface of the microplates. It was found that this process results in the creation of synthetic materials with antibody-like binding properties. It was shown that the MIP-coated microplates are particularly useful for assay development. The high stability of the polymers and good reproducibility of the measurements make MIP coating an attractive alternative to conventional antibodies or receptors used in enzyme linked immunosorbent assay (ELISA).  相似文献   

6.
A molecularly imprinted polymer which recognises the mycotoxin ochratoxin A was prepared using the mimic N-(4-chloro-1-hydroxy-2-naphthoylamido)-(L) -phenylalanine as a template. The polymer was obtained by dissolving the template, methacrylic acid and ethylendimethacrylate in chloroform and polymerising the mixture by thermal treatment at 60°C. The monolith obtained was crushed, sieved to 30–90 m and extensively washed till the template could no longer be found in the washing solution. The binding properties towards the template, ochratoxin A and several related molecules were measured by eluting with acetonitrile and chloroform a HPLC column packed with the imprinted polymer. The experimental results show that the polymer recognises not only the template well, but also the ochratoxin A. The specific molecular recognition effect is due to hydrogen bond interactions but in order to assure the full recognition effect adjunctive steric factors are necessary. The magnitude of these interactions can be controlled by the use of limited amounts of acetic acid in the mobile phase.From the measurement of the relative selectivity it was found that only the simultaneous presence of the carboxyl, the phenolic hydroxyl and certain peculiar substructures such as the chlorine atom assures the whole recognition of the template.  相似文献   

7.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

8.
The preparation of innovative polymeric systems using molecular imprinting technology for application in extracorporeal blood purification is described. Membranes based on a methylmethacrylate-co-acrylic acid copolymer, produced through the phase inversion method, were modified introducing into their structure specific binding sites for cholesterol molecule by adding molecularly imprinted nanoparticles in the membrane matrix. Membranes prepared are intended to selectively remove cholesterol from the blood by using interactions at a molecular level, between the membrane/nanoparticles devices and the template, created during the preparation of polymers. Three polymeric systems in form of nanoparticles were prepared differing in the polymerisation solvent (a mixture of acetonitrile and ethanol (1:1) or pure ethanol), and the molar ratio between the functional monomer and the cross-linker (2.3:1 and 1:1). Two out of three of the prepared polymers showed a very good template rebinding capacity both in phosphate buffer solution (pH 6.9) and in ethanol. In particular the nanoparticles rebound 115.4 mg cholesterol/g polymer in buffer solution, and 57 mg cholesterol/g polymer in ethanol.

The deposition of the nanoparticles on the surface of the phase inversion membranes produced devices with interesting rebinding performances towards cholesterol in buffer solution: a specific recognition of 14.09 mg cholesterol/g system (membrane and nanoparticles) was detected, indicating maintained binding capacity of supported particles as well.  相似文献   


9.
In the present study, the effect of constituting amino acid residue numbers of oligopeptide derivatives, which are candidate materials to construct molecular recognition sites, on chiral recognition ability was investigated. Chiral recognition sites were formed from oligopeptide derivatives, of which constituting amino acid residue numbers were three to six, by adopting an alternative molecular imprinting. It was made clear that the number four, in other words, the tetrapeptide derivative, is the best candidate material to form a chiral recognition site.  相似文献   

10.
11.
Imprinted polymers were prepared for nicotinamide and its positional isomers. The influence of porogenic solvent and functional monomer on recognition properties of the polymer was compared. The results indicated that two functional groups, the heterocyclic nitrogen and the amide group, in the nicotinamide or isonicotinamide molecule have a synergistic effect in binding to the polymer. The polymers prepared with nicotinamide and isonicotinamide can be used as HPLC stationary phase for the separation of positional isomers of nicotinamide or isonicotinamide, while the polymer prepared with picolinamide showed no specificity toward the template. The mechanisms for the differences in recognition are discussed. In addition to the retention of polymers to their templates the polymers also displayed excellent retention to nicotinic acid and isonicotinic acid, compounds structurally similar to the template. This dual recognition property of the polymer may be useful in circumstances where the preparation of a polymer for a specific template may be problematic because of poor stability or solubility.  相似文献   

12.
Striegler S 《Bioseparation》2001,10(6):307-314
The selectivity of carbohydrate-imprinted polymers for several disaccharides, namely cellobiose, maltose, lactose and gentiobiose, is investigated. An ternary ligand–Cu(II)–carbohydrate complex was formed in alkaline solution and captured afterwards in the polymer. The accessibility of the polymer matrix for disaccharides was investigated by HPLC analysis, refractometry and 1H NMR spectroscopy applying excess of the original template during rebinding experiments under saturation conditions in unbuffered, aqueous solution at neutral pH and 20°C. The selective discrimination of the - and -glycosidic linkage of cellobiose and maltose is demonstrated. It is further shown, that the disaccharide-imprinted polymers slightly distinguish between the 1,4-- and the 1,6--glycosidic linkage of cellobiose and gentiobiose, while cellobiose and lactose are not selectively recognized. Due to the weak apparent binding constant of the functional Cu(II) monomers with the targeted disaccharides at physiological pH, the recognition process is dominated by the shape of the created imprinted cavity under the applied conditions.  相似文献   

13.
A highly selective polymer has been prepared for the selective separation of nucleotides by the surface imprinting polymerization. A dialkyl quaternary ammonium chloride was effective as the functional molecule for recognizing the difference in the structure of nucleotides. Adsorptive behavior of the ionic species of the structural analogues, inosine-5'-monophosphoric acid (IMP) and guanosine-5'-monophosphoric acid (GMP), could be controlled by changing the pH condition. Surface imprinting polymers were prepared under different pH conditions; pH 9.0 and pH 8.5. The IMP-imprinted polymers exhibited higher template effect for IMP than for a structural analogue, GMP. A reference polymer prepared without the imprint molecule neither exhibit any selectivity to IMP nor to GMP. The adsorption behavior was quantitatively evaluated by the binding constants for the IMP-imprinted polymer. The imprinting polymer was found to recognize a small structural difference in nucleotides.  相似文献   

14.
A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.  相似文献   

15.
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented.  相似文献   

16.
We describe the use of Raman spectroscopy to detect and quantify, for the first time, the presence of the imprinting template in single molecularly imprinted polymer microspheres. The polymers were imprinted with the β-blocking drugs propranolol and atenolol, and precipitation polymerization was used to obtain spherical particles of diameters of 200 nm and 1.5 μm. The size of the Raman laser spot being between 1 μm and a few μm, the nanoparticles were used for bulk detection whereas with micrometer-sized particles, quantitative measurements on single particles were possible. The laser power, and consequently the acquisition times, needed to be adapted as a function of the polymer and template used in order to avoid burning. Analyte quantification from Raman spectra is straightforward by determining the peak height of a typical Raman band of the analyte, and by using a typical polymer peak for normalization. Relatively low detection limits down to 1 μM have been reached for the detection of S-propranolol through bulk measurements on MIP nanoparticles.  相似文献   

17.
Uracil (URA) was selected as a template for preparing molecularly imprinted membranes of poly(acrylonitrile-co-methylacrylic acid) [P(AN-co-MAA)] using the phase inversion technique. This study used Fourier transform infra-red (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopic studies to characterize the polymer-template interaction and scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphology of the URA imprinted membrane. Resultant membranes had typical ultrafiltration structure with porous morphology and showed a permeation flux of 3.5 x 10 9-5)m(3)/(m(2)s) for 32 microM URA aqueous solution. Permselective binding to the target molecule was observed in permeation experiments with 7.9 micromol/g binding capacity of URA. Binding selectivity was discussed for URA and its analogs, dimethyluracil (DMURA) and caffeine (CAF), with 0.6 and 0.8 micromol/g binding capacity, respectively.  相似文献   

18.
A method for the selective detection of creatinine is reported, which is based on the reaction between polymerised hemithioacetal, formed by allyl mercaptan, o-phthalic aldehyde, and primary amine leading to the formation of fluorescent isoindole complex. This method has been demonstrated previously for the detection of creatine using creatine-imprinted molecularly imprinted polymers (MIPs) Since MIPs created using traditional methods were unable to differentiate between creatine and creatinine, a new approach to the rational design of a molecularly imprinted polymer (MIP) selective for creatinine was developed using computer simulation. A virtual library of functional monomers was assigned and screened against the target molecule, creatinine, using molecular modelling software. The monomers giving the highest binding score were further tested using simulated annealing in order to mimic the complexation of the functional monomers with template in the monomer mixture. The result of this simulation gave an optimised MIP composition. The computationally designed polymer demonstrated superior selectivity in comparison to the polymer prepared using traditional approach, a detection limit of 25 μM and good stability. The ‘Bite-and-Switch’ approach combined with molecular imprinting can be used for the design of assays and sensors, selective for amino containing substances.  相似文献   

19.
In conjunction with polyacrylamide gel electrophoresis (PAGE), molecular imprinting methods have been applied to produce a multilayer mini-slab in order to evaluate how selectively and specifically a hydrogel-based molecularly imprinted polymer (MIP) binds bovine haemoglobin (BHb, ~64.5 kDa). A three-layer mini-slab comprising an upper and lower layer and a MIP, or a non-imprinted control polymer dispersion middle layer has been investigated. The discriminating MIP layer, also based on polyacrylamide, was able to specifically bind BHb molecules in preference to a protein similar in molecular weight such as bovine serum albumin (BSA, ~66 kDa). Protein staining allowed us to visualise the protein retention strength of the MIP layer under the influence of an electric field. This method could be applied to other proteins with implications in effective protein capture, disease diagnostics, and protein analysis.  相似文献   

20.
A pattern recognition algorithm for the alignment of drug-like molecules has been implemented. The method is based on the calculation of quantum mechanical derived local properties defined on a molecular surface. This approach has been shown to be very useful in attempting to derive generalized, non-atom based representations of molecular structure. The visualization of these surfaces is described together with details of the methodology developed for their use in molecular overlay and similarity calculations. In addition, this paper also introduces an additional local property, the local curvature (C L), which can be used together with the quantum mechanical properties to describe the local shape. The method is exemplified using some problems representing common tasks encountered in molecular similarity. Figure Molecular surfaces for Lorazepam (left) and Diazepam (right)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号