首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SSF production of lactic acid from cellulosic biosludges   总被引:2,自引:0,他引:2  
The use of cellulosic biosludges generated in a Kraft pulp mill was investigated as substrate for lactic acid production by simultaneous saccharification and fermentation (SSF). The effect of the operation mode (batch or fedbatch), the initial liquid to solid ratio (12 or 30 g/g) and the nutrient supplementation (MRS components or none) on several parameters including lactic acid concentration, volumetric productivity and product yields, were evaluated. When the operation was carried out in fedbatch mode with nutrient supplementation and using a LSR(0)=12 g/g, a broth containing 42 g/L was obtained after 48 h with a volumetric productivity of 0.87 g/L h and a product yield of 37.8 g lactic acid/100 g biosludges. In a similar experiment carried out without nutrient supplementation, a lactic acid concentration of 39.4 g/L was obtained after 48 h with a volumetric productivity of 0.82 g/L h and a product yield of 35.5 g L-lactic acid/100 g biosludges.  相似文献   

2.
3.

l-Lysine is an essential amino acid that can be produced by chemical processes from fossil raw materials, as well as by microbial fermentation, the latter being a more efficient and environmentally friendly procedure. In this work, the production process of l-lysine-HCl is studied using a systematic approach based on modeling and simulation, which supports decision making in the early stage of process design. The study considers two analysis stages: first, the dynamic analysis of the fermentation reactor, where the conversion of sugars from sugarcane molasses to l-lysine with a strain of Corynebacterium glutamicum is carried out. In this stage, the operation mode (either batch or fed batch) and operating conditions of the fermentation reactor are defined to reach the maximum technical criteria. Afterwards, the second analysis stage relates to the industrial production process of l-lysine-HCl, where the fermentation reactor, upstream processing, and downstream processing are included. In this stage, the influence of key parameters on the overall process performance is scrutinized through the evaluation of several technical, economic, and environmental criteria, to determine a profitable and sustainable design of the l-lysine production process. The main results show how the operating conditions, process design, and selection of evaluation criteria can influence in the conceptual design. The best plant design shows maximum product yield (0.31 g l-lysine/g glucose) and productivity (1.99 g/L/h), achieving 26.5% return on investment (ROI) with a payback period (PBP) of 3.8 years, decreasing water and energy consumption, and with a low potential environmental impact (PEI) index.

  相似文献   

4.
Ethanol and other biofuels produced from lignocellulosic biomass represent a renewable, more carbon-balanced alternative to both fossil fuels and corn-derived or sugarcane-derived ethanol. Unfortunately, the presence of lignin in plant cell walls impedes the breakdown of cell wall polysaccharides to simple sugars and the subsequent conversion of these sugars to usable fuel. Recent advances in the understanding of lignin composition, polymerization, and regulation have revealed new opportunities for the rational manipulation of lignin in future bioenergy crops, augmenting the previous successful approach of manipulating lignin monomer biosynthesis. Furthermore, recent studies on lignin degradation in nature may provide novel resources for the delignification of dedicated bioenergy crops and other sources of lignocellulosic biomass.  相似文献   

5.
Anaerobically digested stillage (ADS) requires treatment before being discharged into water bodies or soils to avoid adverse effects. Phytofiltration systems are eco-friendly technologies for wastewater treatment, and they simultaneously serve as a source of biomass for biofuel production. The aim of the present study was to investigate the phytofiltration of ADS using Azolla sp. The effects of the ADS strength (dilutions 1:?50 and 1?:?25 v/v) and initial biomass density (IBD) [15.44 (IBD1) and 23.16 (IBD2) g dry weight (dw) m?2] on plant growth and pollutant removal were assessed. Productivities obtained at ADS 1:?50 (2.93 and 3.04 g m?2 d?1 for IBD1 and IBD2, respectively) were not significantly different from those of a synthetic medium (2.56 and 3.15 g m?2 for IBD1 and IBD2, respectively). Higher organic matter removal was found using ADS at 1:?25 than that obtained using ADS 1:?50 (52.16–53.34 vs 32.29–38.16%), while no IBD effect was observed. The nutrient concentrations in ADS were reduced significantly, especially the concentrations of NH4-N (75.11–82.54%), PO4-P (88.72–92.90%) and SO4-S (55.95–66.61%). The conversion of nutrients from ADS into Azolla biomass may result in an effective way to produce an attractive feedstock for biofuel production.  相似文献   

6.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

7.
In Penicillium citreoviride strain 3114, dipicolinic acid (DPA) synthesis is inhibited by Ca++ ions and susceptible to catabolite repression, making it unsuitable for fermentation in sugarcane molasses. A mutant, 27133-dpa-Ca-14, was derived through stepwise mutation and selection to produce DPA in the presence of 1000 ppm Ca++ and also to be resistant to catabolite repression. With this mutant, higher product concentrations (36 g DPA/l) could be reached without prior removal of Ca++ from the molasses. The DPA yields increased by about four times (0.4 g DPA/g glucose consumed) and productivity by two and a half-times (3.0 g DPA/l.d) compared with that of the parent strain 3114. Higher product yields (0.58–0.59 g DPA/g glucose consumed) were obtained in a multiple stage fermentation system. DPA was recovered through sepration by ion exchange chromatography followed by concentration and crystallization.  相似文献   

8.
A locally isolated filamentous fungus belonging to the group phycomycetes namely Rhizopus oryzae was identified to secrete alkaline protease. The production of this enzyme through solid state fermentation process has been attempted. From fermented biomass extraction of the enzyme was found to depend on the different parameters like nature of solvent, time of soaking, temperature etc. While optimizing the extraction process, it was found that 10% ethanol with 3% glycerol was the best solvent for protease extraction, when the soaking time was 2 hours and temperature 30v°C. It was further observed that double wash of fermented biomass yielded almost total enzyme in the leachate.  相似文献   

9.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

10.
11.
对木薯粉与甘蔗糖蜜混合原料发酵高浓度酒精的条件进行了优化,先应用P-B(Plackett-Burman)试验筛选影响混合原料高浓度酒精发酵的重要影响因素,结果表明,初始总糖浓度、糖蜜添加时间、初始pH值是影响混合原料酒精发酵的重要因素。采用最陡爬坡实验找到响应面试验的中心点,再利用Box-Behnken设计确定重要参数的最佳水平。各因素的最佳水平是:总糖浓度为29.14%,添加时间为16.5 h,初始pH值为4.7。1 L发酵罐验证试验酒精浓度可达16.07%(V/V)。优化后酒精浓度提高了20%。  相似文献   

12.
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200°C and 5–20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R 2 = 0.8861) and for ethanol production (R 2 = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190°C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.  相似文献   

13.
14.
Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production.  相似文献   

15.
Sugarcane is a prime bioethanol feedstock. Currently, sugarcane ethanol is produced through fermentation of the sucrose, which can easily be extracted from stem internodes. Processes for production of biofuels from the abundant lignocellulosic sugarcane residues will boost the ethanol output from sugarcane per land area. However, unlocking the vast amount of chemical energy stored in plant cell walls remains expensive primarily because of the intrinsic recalcitrance of lignocellulosic biomass. We report here the successful reduction in lignification in sugarcane by RNA interference, despite the complex and highly polyploid genome of this interspecific hybrid. Down‐regulation of the sugarcane caffeic acid O‐methyltransferase (COMT) gene by 67% to 97% reduced the lignin content by 3.9% to 13.7%, respectively. The syringyl/guaiacyl ratio in the lignin was reduced from 1.47 in the wild type to values ranging between 1.27 and 0.79. The yields of directly fermentable glucose from lignocellulosic biomass increased up to 29% without pretreatment. After dilute acid pretreatment, the fermentable glucose yield increased up to 34%. These observations demonstrate that a moderate reduction in lignin (3.9% to 8.4%) can reduce the recalcitrance of sugarcane biomass without compromising plant performance under controlled environmental conditions.  相似文献   

16.
Summary The recycled solid-state surface fermentation (SSF) culture ofAspergillus niger KCU520 was used for repeated batch production of citric acid from sugarcane molasses. The rate of citric acid production was doubled, reducing the fermentation time to half, compared to the normal single cycle batch submerged or surface fermentation process. About 80% sugar was converted to citric acid in five-day batch fermentation and three batches were carried out with the same fungal mat without any significant loss of productivity.  相似文献   

17.
A bioflocculant produced by B. licheniformis was investigated with regard to a low-cost culture medium and its industrial application. Molasses replaced sucrose as the sole carbon source in bioflocculant fermentation. The optimum low-cost culture medium was determined to be composed of 20 g/L molasses, 0.4 g/L urea, 0.4 g/L NaCl, 0.2 g/L KH2PO4, 1.6 g/L K2HPO4, and 0.2 g/L MgSO4. The bioflocculant from B. licheniformis was then applied to treat sugarcane-neutralizing juice to remove colloids, suspended particles, and coloring matters in a sugar refinery factory. The optimal operation conditions were a bioflocculant dosage of 21 U/mL, pH 7.3 and a heating temperature of 100°C. The color and turbidity of the sugarcane juice reached IU 1267 and IU 206, respectively, after clarification with the bioflocculant; these values were almost the same as those acquired following treatment with polyacrylamide (PAM), the most widely applied flocculant in sugar industries. These results suggest the great potential for use of bioflocculants in the sugar refinery process.  相似文献   

18.
The production of 2,3-butanediol by fermentation of high test molasses   总被引:6,自引:0,他引:6  
Summary Klebsiella oxytoca fermented 199 g·l–1 high test or invert molasses using batch fermentation with substrate shift to produce 95.2–98.6 g 2,3-butanediol·l–1 and 2,4–4.3 g acetoin·l–1 with a diol yield of 96–100% of the theoretical value and a diol productivity of 1.0–1.1 g·l–1·h–1. Fermentation was performed numerous times with molasses in repeated batch culture with cell recovery. Such repeated batch fermentation, in addition to a high product yield, also showed a very high product concentration. For example, 118 g 2,3-butanediol·l–1 and 2.3 g acetoin·l–1 were produced from 280 g·l–1 of high test molasses. The diol productivity in this fermentation amounted to 2.4 g·l–1·h–1 and can undoubtedly be further increased by increasing the cell concentration. Because the Klebsiella cultures ferment 2,3-butanediol at an extremely high rate once the sugar has been consumed, the culture was inhibited completely by the addition of 15 g ethanol·l–1 and switching off aeration. Offprint requests to: A. S. Afschar  相似文献   

19.
Penicillium citrinum, using rice husks in a solid state fermentation, produced maximum cellulase yields (37 Units/g) after 12 days with a cellulose utilization of more than 70%. Enzyme yields were three times higher than in shake-flask cultures.  相似文献   

20.
Summary A solid state fermentation process was developed for the conversion of straw and cellulose under anaerobic conditions by a mixed culture of cellulolytic and methanogenic organisms. The bioconversion rate and efficiency were compared under mesophilic (35° C) and thermophilic (55° C) conditions. Cellulolytic activity was assayed in terms of sugar and overall soluble organic matter (chemical oxygen demand, COD) production. Maximum conversion rates were obtained under thermophilic conditions, i.e. 8.4 g and 14.2 g COD/kg·d, respectively, when wheat straw and cellulose were used as substrates. The cellulolytic activity of the reactor contents (23% dry matter), measured under substrate excess conditions, amounted to 50 g COD/kg·d. As a comparison, the activity of rumen contents (15% dry matter) measured by the same assay amounted to 150 g COD/kg·d. The anaerobic cellulases appeared to be substrate bound. This and the relative low activity levels attained, limit the perspectives of producing cellulase enzymes by this type of process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号