首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random amplified polymorphic DNA (RAPD) phenotypes generated by 13 primers were scored for 101 individuals in 14 populations of the endangered red-cockaded woodpecker Picoides borealis. Although no population-specific markers were found, the frequencies of several markers differed significantly among populations. Application of the recently developedamova method (analysis of molecular variance; Excoffier, Smouse & Quattro 1992) showed that more than 90% of phenotypic variance occurred among individuals within populations; of the remaining variance, half was attributed among groups of geographically adjacent populations and half among populations within those groups. The statistical significance of these patterns was supported by Monte Carlo sampling simulations and permutation tests. Estimation of allele frequencies from phenotypes provided somewhat weaker evidence for population structure, although among-population variance in allele frequencies was detectable (Fst= 0.19; x2169= 509.3, P < 0.0001). Upgma cluster analyses based on Rogers' (1972) genetic distance revealed grouping of some geographically proximate populations. A Mantel test indicated a positive (r = 0.16), although not significant, correlation between geographic and genetic distances. We compared a subset of our RAPD data with data from a previous study that used allozymes (Stangel, Lennartz & Smith 1992). RAPD (n= 75) and allozyme (n= 245) results based on samples from the same ten populations showed similar patterns. Our study indicates that RAPDs can be helpful in differentiating populations at the phenotypic level even when small sample sizes, estimation bias, and inability to test for Hardy-Weinberg equilibrium complicate the genotypic interpretation. Lack of large differences among populations of red-cockaded woodpeckers may allow flexibility in overpopulation translocations, provided factors such as habitat preference, latitudinal direction of translocation, and status of donor populations are considered.  相似文献   

2.
Natural population of black locust maintains very high levels of genetic diversity within populations without any noticeable geographic patterns. In order to assess the species' potential for manipulation through breeding programs, more detailed spatial pattern analyses of fine-scale population structure was attempted in the two study sites (watershed 2 and 21) in the Coweeta River Basin of southern Appalachian mountains using allozyme markers. Of the 200 and 420 plants examined in watershed 21 and 2 respectively, 13 and 15 major genotypes of clone were distinguished. Within watersheds 2 and 21, 60% of the pairwise clone combinations had three or four loci differences out of the 8 loci investigated. No correlation between distance between clones and the number of allele difference was found. The similarity values (16 highest and 0 lowest value) among clones for watershed 2 and 21 were 12.82 and 10.19 respectively. Typical distances between clones on both watershed 2 and 21 were from 90 and 190 m, but the range varied from several meters up to 300 m. An average distance among clones were 140.9±66.0 m and 239.4±108.6 m in watershed 2 and 21 respectively, whereas an average distance within clone was 38.7±36.2 m and 145.0±123.6 m in watershed 2 and 21. Genotype diversity indices (DG) for watershed 2 and 21 were 0.89 and 0.86 respectively. The largest clones on both watersheds covered more than 100 m×100 m. On the other hand, some clones on watershed 2, which had a few fallen trees with many young sprouts (up to 200 individuals), were 45 m×30 m in size under the open habitat. Although clonal substructure and limited seed dispersal may cause near neighbor mating interaction, significant genetic patchiness among clones of black locust was not evident. Although the first establishment of a black locust population would have relied on an off-site seed source, it is more likely that asexual reproduction has occurred for many generations in these black locust populations because of the presence of many different sizes of trees (or ages) in one clone despite widespread opportunities for sexual reproduction. Presence of three or four different sizes of trees within a clone implies that the trees has developed from a clone at each different time. The current study suggested that the amount of sexual reproduction and dispersal rate (especially seed dispersal) should be determined. It would be useful to examine whether or not clonal strategies and patterns of clonal growth of black locust are influenced by density dependent regulation of ramet recruitment and death.  相似文献   

3.
Parallel (or convergent) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some nonparallel evolution is present. It is therefore important to explicitly quantify the parallel and nonparallel aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in six independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was parallel across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that parallel evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respects to the dichotomous habitat classifications frequently used in such studies.  相似文献   

4.
? Premise of the study: The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make inferences about the roles of adaptively significant genetic variation, broadly adapted generalist genotypes, and facultative outcrossing in the recent range expansion of B. tectorum in this region. ? Methods: We sampled 20 individuals from each of 96 B. tectorum populations from historically and recently invaded habitats throughout the region and used four polymorphic SSR markers to characterize each individual. ? Key results: We detected 131 four-locus SSR genotypes; however, the 14 most common genotypes collectively accounted for 79.2% of the individuals. Common SSR genotypes were not randomly distributed among habitats. Instead, characteristic genotypes sorted into specific recently invaded habitats, including xeric warm and salt desert as well as mesic high-elevation habitats. Other SSR genotypes were common across a range of historically invaded habitats. We observed very few heterozygous individuals (0.58%). ? Conclusions: Broadly adapted, generalist genotypes appear to dominate historically invaded environments, while recently invaded salt and warm desert habitats are dominated by distinctive SSR genotypes that contain novel alleles. These specialist genotypes are not likely to have resulted from recombination; they probably represent more recent introductions from unknown source populations. We found little evidence that outcrossing plays a role in range expansion.  相似文献   

5.
Measures of diversity within populations, and distance between populations, are compared for organisms with an asexual or mixed mode of reproduction. Examples are drawn from studies of plant pathogenic fungi based on binary traits including presence/absence of DNA bands or virulence/avirulence to differential hosts. Commonly used measures of population diversity or genetic distance consider either genotype frequencies or allele frequencies. Kosman's diversity and distance measures are the most suitable for populations with an asexual or mixed mode of reproduction, because by considering genetic patterns of all individuals they take into account not just the genotype frequencies but also the genetic similarities between genotypes in the populations. The Kosman distance and diversity measures for populations can be calculated using different measures of dissimilarity between individuals (the simple mismatch, Jaccard and Dice coefficients of dissimilarity). Kosman's distances based on the simple mismatch and Jaccard dissimilarities are metrics. Comparisons of diversity indices for hypothetical examples as well as for actual data sets are presented to demonstrate that inferences from diversity analysis of populations can be driven by techniques of diversity and distance assessments and not only data driven.  相似文献   

6.
Differences in habitat use can bridge early and late stages of speciation by initiating assortative mating. Heliconius colour pattern races might select habitats over which each pattern confers a relative fitness advantage because signal efficacy of wing patterns can vary by environment. Thus habitat preferences could serve to promote the evolution of mimetic colour patterns for mate choice. Here I compare colour pattern genotype and phenotype frequencies to environmental variation across the H. erato hydara x H. erato erato hybrid zone in French Guiana to determine whether races exhibit habitat preferences. I found that genotype and phenotype frequencies correspond to differences in land cover moreso than to other environmental factors. Temporal shifts in colour pattern genotypes, phenotypes and land cover also were associated at individual sample sites, which further suggests that H. erato races differ in habitat use and that habitat preferences may promote speciation among Heliconius butterflies.  相似文献   

7.
Scattered patches of Polylepis forest that occur within the 3,000–4,500 m altitudinal belt of the Andean Cordillera from Venezuela to Argentina have been hypothesized to be remnants of once continuous forests whose range became fragmented through anthropogenic activities that probably preceded the Spanish conquest. Allozyme variation of Polylepis pauta from 12 forest populations in three adjacent watersheds in Northeastern Ecuador was investigated to assess whether observed patterns of gene diversity were consistent with a more continuous historical range of the species and to evaluate the populations’ potential for restoration. Genetic diversity and polymorphism in P. pauta populations were higher than mean values for most wind pollinated and dispersed temperate and tropical tree species with regional distributions. Genetic differentiation among watersheds was lower than among populations within each watershed. Isolation by distance was not evident and several populations from different watersheds were more genetically similar than populations from the same watershed. Larger forest patches with broader altitudinal ranges had more alleles. Forest patches on steeper slopes and at higher elevations supported populations with less genetic diversity; this might have resulted from the predominance of vegetative reproduction in these landslide prone areas. The amount of genetic diversity maintained by P. pauta, coupled with low genetic differentiation among populations within and among watersheds, is consistent with a more continuous historical range of the species in Northeastern Ecuador and point to the Oyacachi basin as having the highest levels of genetic diversity.  相似文献   

8.
Proximate factors of the intraspecific variation in molluscan shell morphology have long received attention in biology. The intertidal gastropod Monetaria annulus (Mollusca; Gastropoda; Cypraeidae) is particularly suitable for the study of variation in body size, because this species is a determinate grower in the sense that soft-body size shows no further increase after the juvenile stage. Cross-sectional field surveys on post-juvenile individuals have indicated that the mean body size varies widely among populations and is larger in females than in males within populations. To examine whether these patterns are due to genetic differences, we conducted a common-garden rearing experiment with juvenile individuals collected from two populations on Okinawa Island. After adjusting for among-individual differences in initial degree of development, statistical analyses revealed that this species exhibits female-biased sexual size dimorphism mediated by a longer development time rather than by faster growth rates in females. Although wild individuals show a remarkable size difference between populations, no size difference was found between the populations in the individuals reared in a common-garden condition. This result suggests that the among-population size difference does not have a genetic basis and is caused by phenotypic plasticity based on environmental heterogeneity among habitats.  相似文献   

9.
The geographic distribution of phenotypic variation among closely related populations is a valuable source of information about the evolutionary processes that generate and maintain biodiversity. Leapfrog distributions, in which phenotypically similar populations are disjunctly distributed and separated by one or more phenotypically distinct populations, represent geographic replicates for the existence of a phenotype, and are therefore especially informative. These geographic patterns have mostly been studied from phylogenetic perspectives to understand how common ancestry and divergent evolution drive their formation. Other processes, such as gene flow between populations, have not received as much attention. Here, we investigate the roles of divergence and gene flow between populations in the origin and maintenance of a leapfrog distribution in Phyllobates poison frogs. We found evidence for high levels of gene flow between neighbouring populations but not over long distances, indicating that gene flow between populations exhibiting the central phenotype may have a homogenizing effect that maintains their similarity, and that introgression between ‘leapfroging’ taxa has not played a prominent role as a driver of phenotypic diversity in Phyllobates. Although phylogenetic analyses suggest that the leapfrog distribution was formed through independent evolution of the peripheral (i.e. leapfrogging) populations, the elevated levels of gene flow between geographically close populations poise alternative scenarios, such as the history of phenotypic change becoming decoupled from genome‐averaged patterns of divergence, which we cannot rule out. These results highlight the importance of incorporating gene flow between populations into the study of geographic variation in phenotypes, both as a driver of phenotypic diversity and as a confounding factor of phylogeographic inferences.  相似文献   

10.
Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate‐driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar‐built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low‐plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate‐driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar‐built estuaries have transitioned from lotic (flowing‐water) to lentic (still‐water) habitats, where the low‐plated allele is favoured. The low‐plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate‐driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.  相似文献   

11.
Huang ZS  Ji YJ  Zhang DX 《Molecular ecology》2008,17(8):1930-1947
Single copy nuclear polymorphic (scnp) DNA is potentially a powerful molecular marker for evolutionary studies of populations. However, a practical obstacle to its employment is the general problem of haplotype determination due to the common occurrence of heterozygosity in diploid organisms. We explore here a 'consensus vote' (CV) approach to this question, combining statistical haplotype reconstruction and experimental verification using as an example an indel-free scnp DNA marker from the flanking region of a microsatellite locus of the migratory locust. The raw data comprise 251-bp sequences from 526 locust individuals (1052 chromosomes), with 71 (28.3%) polymorphic nucleotide sites (including seven triallelic sites) and 141 distinct genotypes (with frequencies ranging from 0.2 to 25.5%). Six representative statistical haplotype reconstruction algorithms are employed in our CV approach, including one parsimony method, two expectation-maximization (EM) methods and three Bayesian methods. The phases of 116 ambiguous individuals inferred by this approach are verified by molecular cloning experiments. We demonstrate the effectiveness of the CV approach compared to inferences based on individual statistical algorithms. First, it has the unique power to partition the inferrals into a reliable group and an uncertain group, thereby allowing the identification of the inferrals with greater uncertainty (12.7% of the total sample in this case). This considerably reduces subsequent efforts of experimental verification. Second, this approach is capable of handling genotype data pooled from many geographical populations, thus tolerating heterogeneity of genetic diversity among populations. Third, the performance of the CV approach is not influenced by the number of heterozygous sites in the ambiguous genotypes. Therefore, the CV approach is potentially a reliable strategy for effective haplotype determination of nuclear DNA markers. Our results also show that rare variations and rare inferrals tend to be more vulnerable to inference error, and hence deserve extra surveillance.  相似文献   

12.
Abstract .The nested clade analysis can be extremely useful in testing for an association between genetic variation and geography and in explaining these observed patterns in terms of historical or contemporary population processes. The strength of this method lies in its ability to test a variety of processes simultaneously under a rigorous statistical framework. Indeed, many recent studies have used the nested analysis in a wide range of terrestrial and aquatic taxa. However, it has been suggested that riverine, riparian, or coastal species may be better examined using river (or coastal) distances rather than the standard geographic (great circle) distances among populations. It is thought that the standard geographic distances may not adequately describe the actual distances involved between populations of species inhabiting these one-dimensional (riverine) habitats. Therefore, we analyzed population data from an Ozark crayfish, Orconectes luteus , to examine the effects on the results of a nested clade analysis using river distances. In most cases, the haplotypes detected in this crayfish were unique to a particular drainage or a group of neighboring drainages, indicating very little movement of individuals among drainages. Five major population groups were detected, corresponding to many of the major river drainages sampled in this study. The two types of distance analyses obtain similar results for higher-level (older) clades, but differ in many of the inferences made for lower-level (younger) clades. However, we suggest that the comparison of both types of analyses for riverine species may enhance the process of elucidating historical and contemporary population processes, especially in cases where the transfer of individuals among different drainages are involved.  相似文献   

13.
Morphological variation was analyzed in wild, managed in situ, and cultivated populations of the columnar cactus Stenocereus stellatus in central Mexico. The purpose was to evaluate whether morphological divergence between manipulated and wild populations has resulted from domestication processes. Variation of 23 morphological characters was analyzed among 324 individuals from 19 populations of the Tehuacán Valley and La Mixteca Baja. Multivariate statistical analyses were used to group individuals and populations according to their morphological similarity. Individuals grouped according to the way of management and fruit characteristics were the most relevant for grouping. Within each region, sweet fruits with pulp colors other than red were more frequent in cultivated populations, where fruits were also larger, contained more and bigger seeds, and had thinner peel and fewer spines than fruits from wild individuals. Phenotypes common in managed in situ and cultivated populations generally occur in the wild but in lower frequencies. Artificial selection has thus operated by enhancing and maintaining desirable rare phenotypes in managed in situ and cultivated populations, causing divergent patterns of morphological variation from wild populations. Cultivation has caused the strongest level of divergence, but divergence has also been significant with management of wild populations in situ.  相似文献   

14.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the ‘line of least resistance’). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake–stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances.  相似文献   

15.
Although animal‐associated microbial communities (microbiomes) are increasingly recognized to influence health, the extent to which animals represent highly selective habitats for microbes leading to predominance of high host specificity remains poorly understood. Here, we show that vibrios, which are well‐known commensals and opportunistic pathogens of marine animals, overall display little host preference, likely because of efficient dispersal‐colonization dynamics mediated by food items. We isolated 1753 strains from water and animal samples, which are linked in a food chain and display different degrees of similarity (respiratory and digestive tract of mussels and crabs, live and dead zooplankton, and whole water samples). Multilocus sequence data served as input for modelling and statistical analysis of spatiotemporal population structure. These data showed that the majority of populations occurred broadly within and among hosts, with the dominant population being a near perfect generalist with regard to seasons, host taxa and body regions. Zooplankton harboured the fewest and most specific populations, while crabs and mussels contained the highest diversity with little evidence for host preferences. Most mussel‐ and crab‐associated populations were detected in water samples at similar frequencies, particularly in filter‐feeding mussels where populations were also evenly distributed across host individuals. The higher variation among individuals observed in crabs and zooplankton is consistent with stochastic clonal expansions. These patterns suggest that evolution of a high degree of host specificity is surprisingly rare even though these animals represent long‐lived habitats, and vibrios are consistent members of their microbiome. Instead, many of the populations show stronger association with planktonic (micro)habitats while the microbiome may be a fairly open system for vibrios in which high rates of immigration can outpace selection for specialization.  相似文献   

16.
Many models for inference of population genetic parameters are based on the assumption that the data set at hand consists of groups displaying within-group Hardy-Weinberg equilibrium at individual loci and linkage equilibrium between loci. This assumption is commonly violated by the presence of within-group spatial structure arising from nonrandom mating of individuals due to isolation by distance (IBD). This paper proposes a model and simulation method implemented in a computer program to flexibly simulate data displaying such patterns. The program permits displaying of smooth spatial variations of allele frequencies due to IBD and more abrupt variations due to presence of strong barriers to gene flow. It is useful in assessing performance of various statistical inference methods and in designing spatial sampling schemes. This is shown by a simulation study aimed at assessing the extent to which IBD patterns affect accuracy of cluster inferences performed in models assuming panmixia. The program is also used to study the effects of spatial sampling scheme (e.g. sampling individuals in clumps or uniformly across the spatial domain). The accuracy of such inferences is assessed in terms of number of inferred populations, assignment of individuals to populations and location of borders between populations. The effect of spatial sampling was weak while the effect of IBD may be substantial, leading to the inference of spurious populations, especially when IBD was strong with respect to the size of the sampling domain. The model and program are new and have been embedded in the R package Geneland, for user convenience and compliance with existing data formats.  相似文献   

17.
Although much work has been conducted on coastal populations of the American alligator (Alligator mississippiensis), less is known about the population dynamics and genetic structure of populations of alligators confined to inland habitats. DNA microsatellite loci, derived from the American alligator, were used to investigate patterns of genetic variation within and between populations of alligators distributed at coastal and inland localities in Texas. These data were used to evaluate the genetic discreteness of different alligator stocks relative to their basic ecology at these sites. Observed mean heterozygosities across seven loci for both coastal and inland populations ranged from 0.50-0.61, with both inland and coastal populations revealing similar patterns of variation. Measures of F(st) revealed significant population differentiation among all populations; however, analyses of molecular variance (AMOVAs) failed to demonstrate any apparent geographic pattern relative to the population differentiation indicated by F(st) values. Each population contained unique alleles for at least one locus. Additionally, assignment tests based on the distribution of genotypes placed 76% of individuals to their source population. These genetic data suggest considerable subdivision among alligator populations, possibly influenced by demographic and life history differences as well as barriers to dispersal. These results have clear implications for management. Rather than managing alligators in Texas as a single panmictic population, translocation programs and harvest quotas should consider the ecological and genetic distinctiveness of local alligator populations.  相似文献   

18.
Recent studies with Drosophila have suggested that there is extensive genetic variability for phenotypic plasticity of body size versus food level. If true, we expect that the outcome of evolution at very different food levels should yield genotypes whose adult size show different patterns of phenotypic plasticity. We have tested this prediction with six independent populations of Drosophila melanogaster kept at extreme densities for 125 generations. We found that the phenotypic plasticity of body size versus food level is not affected by selection or the presence of competitors of a different genotype. However, we document increasing among population variation in phenotypic plasticity due to random genetic drift. Several reasons are explored to explain these results including the possibility that the use of highly inbred lines to make inferences about the evolution of genetically variable populations may be misleading.  相似文献   

19.
We examined the assumption that landscape heterogeneity similarly influences the spatial distribution of genetic diversity in closely related and geographically overlapping species. Accordingly, we evaluated the influence of watershed affiliation and nine habitat variables from four categories (spatial isolation, habitat size, climate, and ecology) on population divergence in three species of Pacific salmon (Oncorhynchus tshawytscha, O. kisutch, and O. keta) from three contiguous watersheds in subarctic North America. By incorporating spatial data we found that the three watersheds did not form the first level of hierarchical population structure as predicted. Instead, each species exhibited a broadly similar spatial pattern: a single coastal group with populations from all watersheds and one or more inland groups primarily in the largest watershed. These results imply that the spatial scale of conservation should extend across watersheds rather than at the watershed level which is the scale for fishery management. Three independent methods of multivariate analysis identified two variables as having influence on population divergence across all watersheds: precipitation in all species and subbasin area (SBA) in Chinook. Although we found general broad-scale congruence in the spatial patterns of population divergence and evidence that precipitation may influence population divergence in each species, we also found differences in the level of population divergence (coho > Chinook and chum) and evidence that SBA may influence population divergence only in Chinook. These differences among species support a species-specific approach to evaluating and planning for the influence of broad-scale impacts such as climate change.  相似文献   

20.
Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号