首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Premise

Floral shape (relative arrangement and position of floral organs) is critical in mediating fit with pollinators and maximizing conspecific pollen transfer particularly in functionally specialized systems. To date, however, few studies have attempted to quantify flowers as the inherently three-dimensional (3D) structures they are and determine the effect of intraspecific shape variation on pollen transfer. We here addressed this research gap using a functionally specialized system, buzz pollination, in which bees extract pollen through vibrations, as a model. Our study species, Meriania hernandoi (Melastomataceae), undergoes a floral shape change from pseudocampanulate corollas with more actinomorphically arranged stamens (first day) to open corollas with a more zygomorphic androecium (second day) over anthesis, providing a natural experiment to test how variation in floral shape affects pollination performance.

Methods

In one population of M. hernandoi, we bagged 51 pre-anthetic flowers and exposed half of them to bee pollinators when they were in either stage of their shape transition. We then collected flowers, obtained 3D flower models through x-ray computed tomography for 3D geometric morphometric analyses, and counted the pollen grains remaining per stamen (male pollination performance) and stigmatic pollen loads (female pollination performance).

Results

Male pollination performance was significantly higher in open flowers with zygomorphic androecia than in pseudo-campanulate flowers. Female pollination performance did not differ among floral shapes.

Conclusions

These results suggest that there is an “optimal” shape for male pollination performance, while the movement of bees around the flower when buzzing the spread-out stamens results in sufficient pollen deposition regardless of floral shape.
  相似文献   

2.
The floral biology of eight species of Magnolia native to the United States is described. The flowers are protogynous. They are pollinated by several species of beetles that enter buds as well as closed and open flowers to feed on nectar, stigmas, pollen, and secretions of the petals. Individual flowers persist from two to four days and undergo a series of petal, stigma, and stamen movements that assure pollination by beetles. It is suggested that the flowers of Magnolia are highly specialized for exclusive pollination by beetles. These specialization mechanisms produce large quantities of food for the beetles and deny other types of insects (bees, moths, etc.) access to the flowers at critical stages in the pollination process, i.e., when stigmas are mature and pollen is shed.  相似文献   

3.
The classification of specialized floral syndromes has imposed a bias in the interpretation of pollination systems which may be either more generalized, or more specialized, than we have universally acknowledged. An analysis of floral biology in two umbellifer genera, Thaspium and Zizia, was undertaken in order to determine the extent to which cryptic floral or inflorescence variations determine pollination specialization despite a broad visitor spectrum and open reward system. Separate analyses were made of the primary attractants, nectar and pollen, and the secondary attractants, floral color and floral and inflorescence structure in conjunction with analyses of pollinator movements, stigmatic pollen loads and fruit set. All data support the conclusion that cryptic variation in floral and inflorescence characters enhance specialization for pollination by solitary bees or syrphid flies. In addition, evidence is presented for the importance of the oligolectic relationship between taxa of Thaspium and Zizia and the solitary bee, Andrena ziziae. The need for more experimental work both to further define the oligolectic relationship and to understand how floral and inflorescence color and structure affect insect movements is especially revealed by this study. The degree of pollination specialization in Thaspium and Zizia is not uncommon in Apiaceae and has important implications for floral evolution in this family and other plant groups with pollination systems categorized as “promiscuous.”  相似文献   

4.
  • The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz‐pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore.
  • We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy.
  • Medium‐sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors.
  • The strategy of spreading pollen all over the pollinator's body is rather cost‐intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.
  相似文献   

5.

Background and Aims

Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.

Methods

Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.

Key Results

Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.

Conclusions

Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships.  相似文献   

6.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

7.
Zheng  Guiling  Li  Peng  Pemberton  Robert  Luo  Yibo 《Ecological Research》2011,26(2):453-459
Most Cypripedium species are specialized orchids pollinated by, in a broad sense, bees or flies. Here we present the first evidence that a slipper orchid, Cypripedium flavum, is pollinated by both bees and flies, i.e., bumblebees and blowflies. Artificial pollination experiments demonstrated that the flowers of C. flavum are self-compatible, but need pollen vectors for successful reproduction. Field observations detected 25 insects visiting the flowers, and 14 of these insects entered into the labellum of the flowers, but only female bumblebees, Bombus hypnorum, B. remotus, and the blowfly Calliphora vomitoria exited of the labellum with pollen smears of C. flavum. The floral functional morphology of C. flavum appears to be more suited to bumblebees than to blowflies. The bumblebees are more efficient pollinators of the orchid, but blowflies are more frequent visitors, so they pollinated more flowers despite being less efficient.  相似文献   

8.
Pollen and nectar are usually lumped together as floral rewards for pollinating bees, but they play totally different roles for flowers and bees (Table 1), as well as in the relationship between them. While flowers are specialized for certain pollinators via nectar, bees specialize on certain flowers via pollen. While flowers need pollen as a prerequisite for pollination, it is the essential larval food in bees. Thus, there is a strong competition between them for pollen. Foraging for pollen must be divided into three phases: uptake in the flower, reloading into and homeward transport within a carrying container. Bees have specializations for transport but hardly any for pollen uptake - and thus for pollination. Bees actively harvesting pollen usually do not pollinate. This only happens as a consequence of contamination of the bee by pollen. From these data a scenario is provided for the evolution of bees and bee flowers. Specialized bee flowers are often characterized by their ability to hide pollen from the bees and at the same time use them as optimal pollinators. If the relationship of bees and flowers is mutualistic at all it is best described as a balanced mutual exploitation.  相似文献   

9.
Mimicry of non-rewarding flowers to rewarding flowers has been accepted as a strategy to improve pollination success in angiosperms. It has been proposed that this mechanism depends on whether potential pollinators can discriminate between the flowers. In this study, the intersexual mimicry and deceit pollination were studied in a threatened dioecious aquatic herb, Ottelia acuminata. Its female flowers resemble male flowers in morphology and odor compounds, to avoid discrimination by pollinators and outcompete male flowers in attracting the pollinators using stronger scents and bigger flowers. However, an obvious visit bias of its pollinator (Apis cerana) to male flowers was detected, suggesting that bees can distinguish the rewarding males from non-rewarding females. Although the deceit was not successful, pollination was not seriously undermined because pollen limitation was found to be low in the sampled natural population. We speculate that, due to “accidental” visits on female flowers and “mistake” pollinations, pollen limitation could be mitigated by a high frequency of pollen donors, and is correlated with the size and sex ratio of a population. Ottelia acuminata is a threatened dioecious aquatic herb. We suggest that developing multi-stakeholder coalitions should be encouraged to save the threatened edible and ornamental plant species in China. We hope this study could provide new insights into understanding of the role of intersexual mimicry in other flowering plants.  相似文献   

10.
The functional floral morphology of the three genera of Vivianiaceae (= Ledocarpaceae, Geraniales), Rhynchotheca, Viviania and Balbisia, is compared. Likely pollination mechanisms are inferred from morphology and field observations. The flowers of Viviania are nectariferous and apparently zoophilous with nectar as the (primary) pollinator reward. Balbisia has pollen flowers without nectaries, its showy corolla indicates that it is also zoophilous with pollen as sole pollinator reward; bees were observed as flower visitors. One taxon (B. gracilis) may be anemophilous. Rhynchotheca has flowers without petals, with large, pendulous anthers and lacks nectaries. It shows synchronous mass flowering in its natural populations and is evidently anemophilous. A comparison with other Geraniales shows that nectar flowers with small anthers are likely the ancestral condition in Vivianiaceae. This suggests that the pollen flowers with larger anthers of Balbisia and Rhynchotheca may represent an apomorphic condition. The documentation of pollen flowers and anemophily in Vivianiaceae expands the range of known floral and pollination syndromes in Geraniales.  相似文献   

11.
Wind tunnel analyses of Simmondsia chinensis (Link) Schneider or “jojoba” were conducted to quantify the behavior of airborne pollen grains around individual branches and leaves and near individual carpellate flowers. Field data (wind velocity) were used to ensure a correspondence between wind tunnel and natural conditions. Based upon the visualization of individual pollen grain trajectories, it is concluded that pollen deposition on stigmatic surfaces is influenced by large-scale aerodynamic patterns, generated by foliage leaves, and small-scale airflow patterns, formed around and by floral parts and stigmas. Leaves are seen to deflect airborne pollen grains into trajectories that can intersect ambient airflow at 90° angles, showering decumbent carpellate flowers with pollen. Similarly, flowers can deflect pollen upward and downwind, toward other flowers. The extent of floral bract and sepal recurvature is shown to influence the extent of pollen deposition by determining the characteristic airflow pattern around stigmas. Available evidence concerning the relatively recent evolutionary transition to anemophily in Simmondsia is interpreted within the context of morphological adaptations and exaptations favoring wind pollination.  相似文献   

12.
Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology.  相似文献   

13.
Abstract Animal‐pollinated plant species modulate the presentation of pollinator rewards to maximize reproductive success. In plants providing pollen as the only reward for pollinators, it is usually difficult to unravel the dual roles of reward presentation and the realization of male and female functions (pollen removal and deposition). Exploiting the two types of anther in the androecia of Melastoma malabathricum L., we examined whether the removal of pollen for reward is regulated primarily to favor male function or female function. Pollen removal by carpenter bees from the feeding and pollination anthers, as well as pollen deposition on the stigmas, were quantified during anthesis of M. malabathricum. There was no significant difference in pollen removal rates from the feeding and pollination anthers of M. malabathricum between the onset of anthesis and flower wilting. The stigmatic pollen loads exceeded the ovule number after three sonication bouts, and female function was satisfied earlier than male function. The results support the hypothesis that the presentation of pollination reward in this species is regulated primarily to favor the expression of male function, rather than female function, in agreement with the pollen‐donation hypothesis. A cooperative relationship between the feeding and pollination anthers was demonstrated in heterantherous flowers, which optimizes the balance in investments between pollinator rewards and “functional pollen” for gene transfer.  相似文献   

14.
We compared pollen removal and deposition by hummingbirds and bumblebees visiting bird-syndrome Penstemon barbatus and bee-syndrome P. strictus flowers. One model for evolutionary shifts from bee pollination to bird pollination has assumed that, mostly due to grooming, pollen on bee bodies quickly becomes unavailable for transfer to stigmas, whereas pollen on hummingbirds has greater carryover. Comparing bumblebees and hummingbirds seeking nectar in P. strictus, we confirmed that bees had a steeper pollen carryover curve than birds but, surprisingly, bees and birds removed similar amounts of pollen and had similar per-visit pollen transfer efficiencies. Comparing P. barbatus and P. strictus visited by hummingbirds, the bird-syndrome flowers had more pollen removed, more pollen deposited, and a higher transfer efficiency than the bee-syndrome flowers. In addition, P. barbatus flowers have evolved such that their anthers and stigmas would not easily come into contact with bumblebees if they were to forage on them. We discuss the role that differences in pollination efficiency between bees and hummingbirds may have played in the repeated evolution of hummingbird pollination in Penstemon.  相似文献   

15.
The visiting behaviour of oil-gathering, anthophorid bees on eglandular morphs of two Malpighiaceae species was observed in southeastern Brazil. The bees landed on eglandular flowers apparently by mistake, as suggested by their making one to a few scraping movements on landing, and behaving in the same way as they scrape oil glands on glandular flowers. After perceiving their mistake the bees either left the flower, making one to a few additional visits to other eglandular flowers before leaving the plant, or switched to pollen collecting. Large and medium-sized species of Centris, and some Epicharis, left the flowers after mistake visits, thus wasting time and energy, whereas small Centris and larger Epicharis switched to pollen harvesting, thus turning a mistake into a rewarding visit. Eglandular flowers of both Banisteriopsis muricata and Heteropterys aceroides attracted oil-gathering bees by deceit and probably acted as mimics of glandular flowers of their own species (automimicry). The pollination of eglandular morphs of these two Malpighiaceae species seems dependent mainly on the opportunistic, mixed oil-pollen gathering behaviour of deceived bees such as Epicharis schrottkyi. We suggest that some showy, eglandular species such as Banisteriopsis lutea may act as general mimics of other, oil-rewarding Malpighiaceae species.  相似文献   

16.
A multivariate search for pollination syndromes among penstemons   总被引:4,自引:0,他引:4  
The seeming ubiquity of spatio-temporal variation in pollination regime suggests that flowers ought to be adapted to a wide range of pollinators, yet many comparative biologists perceive that in groups with complex flowers there is considerable specialization onto pollination syndromes. Statistical documentation of such syndromes has been presented for very few groups of flowers. Accordingly, we measured, for 49 species of Penstemon and close relatives, both the morphology of the flowers and visitation by pollinators. We describe the mechanics of pollination for representative species. Ordinations show a distinct difference between hummingbird-pollinated species and hymenopteran-pollinated species. Flower color is particularly good at separating hummingbird- from hymenopteran-flowers. Other characters are also correlated with this dichotomy. Within the hymenopteran-pollinated species, there are additional relationships between floral morphology and the size of the principal pollinators. Flowers frequented by large bees, such as Xylocopa , have large open vestibules and relatively short floral tubes. Flowers frequented by smaller bees, such as Osmia , have long narrow floral tubes. Unlike nectar-collecting bees, pollen-collecting bees tend to be attracted to flowers of the hummingbird syndrome. The overarching pattern was that syndrome characterizations were successful at predicting pollination by hummingbirds versus Hymenoptera, two types of animals that are profoundly different, but less successful at predicting visitation by one kind of bee versus another.  相似文献   

17.
Abstract Diurnal visitors to the flowers of many native plant species were identified in a wide range of Tasmanian sclerophyllous vegetation between September 1996 and April 1997. These foraging profiles were analysed to determine whether they were characteristic of various floral morphologies in predictable ways. It was found that although visitor profiles were sometimes consistent with classic pollination syndromes, these syndromes were unreliable predictors of floral visitors. Very few flowers were exclusively bird‐pollinated, and none were strictly fly‐, beetle‐, wasp‐, or butterfly‐pollinated. The majority of flowering plants were unspecialized in their morphology, and consequently hosted a diverse array of visitors. In addition, visitor profiles to congeners with similar floral morphologies, and even to conspecifics, differed between habitats. Altitude was a major factor in determining visitors, with flies being the most abundant visitors above 700 m. However, congeners in several genera of Epacridaceae, as well as the genus Correa, which differed in floral morphology also differed in visitor profiles. Tubular flowers were associated with birds, while flowers with more accessible nectar were visited by insects. The only taxa exhibiting a bee‐pollination syndrome that were largely visited by bees were the Fabaceae and Goodenia ovata Sm. Several species with purple or pink flowers were also predominantly visited by bees, but did not strictly conform to the melittophilous syndrome. In contrast, other flowers exhibiting an ostensibly mellitophilous syndrome hosted very few bees. Of these, species that occurred at high altitude were mainly visited by flies, while others received very few potential pollen vectors.  相似文献   

18.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

19.
Bdallophytum oxylepis is a rare and endemic species belonging to the Cytinaceae family, a root holoparasitic plant in which most resources are allocated to attracting pollinators. This species is gynomonoecious with intraindividual variation in flower size and sex. Moreover, the flowers exhibit sapromyophilous traits, as do other species of Bdallophytum. Firstly, this study aimed to determine whether all floral morphs can form seeds and be pollen donors (in the case of bisexual flowers). Secondly, as this species has floral traits hypothesized to adapt to particular types of pollen vectors (carrion flies), we also studied the pollination of B. oxylepis to confirm whether the syndromes correspond to what occurs in nature. Through pollination treatments, we determined that all floral morphs are functional. By monitoring the inflorescences, we found that pollination is specialized in the studied population. Stingless bees performed pollination, as they have a high visitation rate, frequency, and constancy, and they are unique visitors that deposit pollen on the stigmas. Thus, they appear to be effective pollinators rather than carrion flies, as predicted by the syndrome. As shown here, animal–plant interaction studies can help establish a basis for conserving rare species such as holoparasites. Moreover, knowledge about the reproductive aspects of B. oxylepis reveals essential clues about its life cycle and role in maintaining native pollinators with economic and cultural value, such as stingless bees.  相似文献   

20.
1. Measurements of pollinator performance are crucial to pollination studies, enabling researchers to quantify the relative value of different pollinator species to plant reproduction. One of the most widely employed measures of pollinator performance is single-visit pollen deposition, the number of conspecific pollen grains deposited to a stigma after one pollinator visit. To ensure a pollen-free stigma, experimenters must first bag flowers before exposing them to a pollinator. 2. Bagging flowers, however, may unintentionally manipulate floral characteristics to which pollinators respond. In this study, we quantified the effect of bagging on nectar volume in watermelon (Citrullus lanatus) flowers, and how this affects pollinator performance and behaviour. 3. Experimental bagging resulted in roughly 30-fold increases in nectar volume relative to unmanipulated, open-pollinated field flowers after only a few hours. Honey bees, but not native bees, consistently displayed elevated handling times and single-visit pollen deposition on unmanipulated bagged flowers relative to those from which we removed nectar to mimic volumes in open-pollinated flowers. 4. Furthermore, we identify specific bee foraging behaviours during a floral visit that account for differences in pollen deposition, and how these differ between honey bees and native bees. 5. Our findings suggest that experimental bagging of flowers, without accounting for artificially accumulated nectar, can lead to biased estimates of pollinator performance in pollinator taxa that respond strongly to nectar volume. We advise that pollination studies be attentive to nectar secretion dynamics in their focal plant species to ensure unbiased estimates of pollinator performance across multiple pollinator species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号