首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Different methods have been devised to analyze vulnerability to cavitation of plants. Although a good agreement between them is usually found, some discrepancies have been reported when measuring samples from long‐vesseled species. The aim of this study was to evaluate possible artifacts derived from different methods and sample sizes. Current‐year shoot segments of mature olive trees (Olea europaea), a long‐vesseled species, were used to generate vulnerability curves (VCs) by bench dehydration, pressure collar and both static‐ and flow‐centrifuge methods. For the latter, two different rotors were used to test possible effects of the rotor design on the curves. Indeed, high‐resolution computed tomography (HRCT) images were used to evaluate the functional status of xylem at different water potentials. Measurements of native embolism were used to validate the methods used. The pressure collar and the two centrifugal methods showed greater vulnerability to cavitation than the dehydration method. The shift in vulnerability thresholds in centrifuge methods was more pronounced in shorter samples, supporting the open‐vessel artifact hypothesis as a higher proportion of vessels were open in short samples. The two different rotor designs used for the flow‐centrifuge method revealed similar vulnerability to cavitation. Only the bench dehydration or HRCT methods produced VCs that agreed with native levels of embolism and water potential values measured in the field.  相似文献   

2.
Vulnerability to cavitation curves are used to estimate xylem cavitation resistance and can be constructed using multiple techniques. It was recently suggested that a technique that relies on centrifugal force to generate negative xylem pressures may be susceptible to an open vessel artifact in long-vesselled species. Here, we used custom centrifuge rotors to measure different sample lengths of 1-yr-old stems of grapevine to examine the influence of open vessels on vulnerability curves, thus testing the hypothesized open vessel artifact. These curves were compared with a dehydration-based vulnerability curve. Although samples differed significantly in the number of open vessels, there was no difference in the vulnerability to cavitation measured on 0.14- and 0.271-m-long samples of Vitis vinifera. Dehydration and centrifuge-based curves showed a similar pattern of declining xylem-specific hydraulic conductivity (K(s)) with declining water potential. The percentage loss in hydraulic conductivity (PLC) differed between dehydration and centrifuge curves and it was determined that grapevine is susceptible to errors in estimating maximum K(s) during dehydration because of the development of vessel blockages. Our results from a long-vesselled liana do not support the open vessel artifact hypothesis.  相似文献   

3.
A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static‐ and flow‐centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open‐vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centered on whether exponential VCs are more reliable when the static‐centrifuge method is used rather than the flow‐centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static‐ and flow‐centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. In addition, the injection of water in the flow‐centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench‐dehydration VC.  相似文献   

4.
《植物生态学报》2018,42(11):1113
在全球变暖的背景下, 植物木质部栓塞脆弱性是林木死亡率升高的重要生理学因素。然而不同方法在长导管树种上建立的栓塞脆弱性曲线存在较大差异。该研究以长导管树种刺槐(Robinia pseudoacacia)为研究对象, 利用自然干燥法、Cochard Cavitron离心机法以及Sperry离心机法建立了栓塞脆弱性曲线, 旨在探讨不同检测方法的合理性。在Sperry离心法中, 使用了两种规格的转子, 从而对“开口导管假象”学说进行了检验。研究结果表明: 自然干燥法建立的栓塞脆弱性曲线为“s”形, 而Cochard Cavitron离心机法和Sperry离心机法建立的栓塞脆弱性曲线为“r”形; 自然干燥法与离心机法建立的曲线存在显著性差异, 且两种离心机法建立的曲线也具有显著性差异。尽管刺槐枝条的导管长度分布表明14.4 cm长的刺槐枝条具有更高比例的开放导管, 但用Sperry离心机法在27.4 cm和14.4 cm长茎段上建立的栓塞脆弱性曲线相似, 表明Sperry离心机法检测刺槐脆弱性曲线时未产生“开口导管假象”, 具有更为可靠的检测结果。  相似文献   

5.
安瑞  孟凤  尹鹏先  杜光源 《植物生态学报》2018,42(11):1113-1119
在全球变暖的背景下, 植物木质部栓塞脆弱性是林木死亡率升高的重要生理学因素。然而不同方法在长导管树种上建立的栓塞脆弱性曲线存在较大差异。该研究以长导管树种刺槐(Robinia pseudoacacia)为研究对象, 利用自然干燥法、Cochard Cavitron离心机法以及Sperry离心机法建立了栓塞脆弱性曲线, 旨在探讨不同检测方法的合理性。在Sperry离心法中, 使用了两种规格的转子, 从而对“开口导管假象”学说进行了检验。研究结果表明: 自然干燥法建立的栓塞脆弱性曲线为“s”形, 而Cochard Cavitron离心机法和Sperry离心机法建立的栓塞脆弱性曲线为“r”形; 自然干燥法与离心机法建立的曲线存在显著性差异, 且两种离心机法建立的曲线也具有显著性差异。尽管刺槐枝条的导管长度分布表明14.4 cm长的刺槐枝条具有更高比例的开放导管, 但用Sperry离心机法在27.4 cm和14.4 cm长茎段上建立的栓塞脆弱性曲线相似, 表明Sperry离心机法检测刺槐脆弱性曲线时未产生“开口导管假象”, 具有更为可靠的检测结果。  相似文献   

6.
Among woody plants, grapevines are often described as highly vulnerable to water‐stress induced cavitation with emboli forming at slight tensions. However, we found native embolism never exceeded 30% despite low xylem water potentials (Ψx) for stems of field grown vines. The discrepancy between native embolism measurements and those of previous reports led us to assess vulnerability curve generation using four separate methods and alterations (i.e. segment length and with/without flushing to remove embolism prior to measurement) of each. Centrifuge, dehydration and air‐injection methods, which rely on measurement of percentage loss of hydraulic conductivity (PLC) in detached stems, were compared against non‐invasive monitoring of xylem cavitation with nuclear magnetic resonance (NMR) imaging. Short segment air‐injection and flushed centrifuge stems reached >90 PLC at Ψx of‐0.5 and ?1.5 MPa, respectively, whereas dehydration and long‐segment air‐injection measurements indicated no significant embolism at Ψx > ?2.0 MPa. Observations from NMR agreed with the dehydration and long segment air‐injection methods, showing the majority of vessels were still water‐filled at Ψx > ?1.5 MPa. Our findings show V. vinifera stems are far less vulnerable to water stress‐induced cavitation than previously reported, and dehydration and long segment air‐injection techniques are more appropriate for long‐vesseled species and organs.  相似文献   

7.
A new technique for generating xylem cavitation and vulnerability curves was evaluated. The centrifugal force was used to lower the negative pressure in a xylem segment and to induce a positive pressure difference between sample's ends. This enabled the determination of sample hydraulic conductance during centrifugation and, hence, its variation with decreasing xylem pressures. The centrifuge technique was compared with standard methods on a large number of species including conifers, diffuse-porous and ring-porous woody angiosperms. A very good agreement was found for coniferous and diffuse-porous species. However, the technique was not appropriate for ring-porous species, probably because many vessels were cut open in the centrifuged xylem segments. The main advantage of this technique is its rapidity, the vulnerability curve of a xylem segment being constructed typically in less than half an hour. This will greatly facilitate the study of xylem cavitation in ecological or genetic researches.  相似文献   

8.
The Cavitron spinning technique is used to construct xylem embolism vulnerability curves (VCs), but its reliability has been questioned for species with long vessels. This technique generates two types of VC: sigmoid ‘s’‐shaped and exponential, levelling‐off ‘r’‐shaped curves. We tested the hypothesis that ‘r’‐shaped VCs were anomalous and caused by the presence of vessels cut open during sample preparation. A Cavitron apparatus was used to construct VCs from samples of different lengths in species with contrasting vessel lengths. The results were compared with VCs obtained using other independent techniques. When vessel length exceeded sample length, VCs were ‘r’‐shaped and anomalous. Filling vessels cut open at both ends with air before measurement produced more typical ‘s’‐shaped VCs. We also found that exposing segments of 11 woody species in a Cavitron at the pressure measured in planta before sampling considerably increased the degree of embolism above the native state level for species with long vessels. We concluded that open vessels were abnormally more vulnerable to cavitation than intact vessels. We recommend restricting this technique to species with short conduits. The relevance of our conclusions for other spinning techniques is discussed.  相似文献   

9.
Vulnerability curves using the 'Cavitron' centrifuge rotor yield anomalous results when vessels extend from the end of the stem segment to the centre ('open-to-centre' vessels). Curves showing a decline in conductivity at modest xylem pressures ('r' shaped) have been attributed to this artefact. We determined whether the original centrifugal method with its different rotor is influenced by open-to-centre vessels. Increasing the proportion of open-to-centre vessels by shortening stems had no substantial effect in four species. Nor was there more embolism at the segment end versus centre as seen in the Cavitron. The dehydration method yielded an 'r' shaped curve in Quercus gambelii that was similar to centrifuged stems with 86% open-to-centre vessels. Both 'r' and 's' (sigmoidal) curves from Cercocarpus intricatus were consistent with each other, differing only in whether native embolism had been removed. An 'r' shaped centrifuge curve in Olea europaea was indistinguishable from the loss of conductivity caused by forcing air directly across vessel end-walls. We conclude that centrifuge curves on long-vesselled material are not always prone to the open vessel artefact when the original rotor design is used, and 'r' shaped curves are not necessarily artefacts. Nevertheless, confirming curves with native embolism and dehydration data is recommended.  相似文献   

10.
During periods of dehydration, water transport through xylem conduits can become blocked by embolism formation. Xylem embolism compromises water supply to leaves and may lead to losses in productivity or plant death. Vulnerability curves (VCs) characterize plant losses in conductivity as xylem pressures decrease. VCs are widely used to characterize and predict plant water use at different levels of water availability. Several methodologies for constructing VCs exist and sometimes produce different results for the same plant material. We directly compared four VC construction methods on stems of black cottonwood (Populus trichocarpa), a model tree species: dehydration, centrifuge, X‐ray–computed microtomography (microCT), and optical. MicroCT VC was the most resistant, dehydration and centrifuge VCs were intermediate, and optical VC was the most vulnerable. Differences among VCs were not associated with how cavitation was induced but were related to how losses in conductivity were evaluated: measured hydraulically (dehydration and centrifuge) versus evaluated from visual information (microCT and optical). Understanding how and why methods differ in estimating vulnerability to xylem embolism is important for advancing knowledge in plant ecophysiology, interpreting literature data, and using accurate VCs in water flux models for predicting plant responses to drought.  相似文献   

11.
Development of xylem embolism during water stress in two diffuse‐porous hardwoods, Katsura (Cercidiphyllum japonicum) and Japanese white birch (Betula platyphylla var. japonica), was observed non‐destructively under a compact magnetic resonance imaging (MRI) system in addition to conventional quantitation of hydraulic vulnerability to cavitation from excised stem segments. Distribution of white and dark areas in MR images corresponded well to the distribution of water‐filled/embolized vessels observed by cryo‐scanning electron microscopy in both species. Water‐filled vessels were observed in MR images as white areas in Katsura and as white dots in Japanese white birch, respectively, and embolisms could be detected as a change to dark areas. The increase in the relative embolized area (REA: %) in the cross‐sectional area of total xylem during water stress, which was estimated from the binarized MR images, was consistent with the hydraulic vulnerability curves of these species. From the non‐destructive MRI observations, cavitation induced by water stress was shown to develop earlier in 1‐ or 2‐year‐old xylem than in the current‐year xylem in both species; that is, the vulnerability to cavitation differs between vessels in the current‐year xylem and those in older annual rings.  相似文献   

12.
Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not significantly water stressed prior to collection. Cavitation resistance was determined from "vulnerability curves" showing the percentage loss of conductivity versus xylem pressure. Two responses were observed. "Resilient" xylem (Acer negundo and Alnus incana stems) showed no change in cavitation resistance after a cavitation-refilling cycle. In contrast, "weakened" xylem (Populus angustifolia, P. tremuloides, Helianthus annuus stems, and Aesculus hippocastanum petioles) showed considerable reduction in cavitation resistance. Weakening was observed whether cavitation was induced by centrifugation, air dehydration, or soil drought. Observations from H. annuus showed that weakening was proportional to the embolism induced by stress. Air injection experiments indicated that the weakened response was a result of an increase in the leakiness of the vascular system to air seeding. The increased air permeability in weakened xylem could result from rupture or loosening of the cellulosic mesh of interconduit pit membranes during the water stress and cavitation treatment.  相似文献   

13.
Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.  相似文献   

14.
Since 2005, an unresolved debate has questioned whether R‐shaped vulnerability curves (VCs) might be an artefact of the centrifuge method of measuring VCs. VCs with R‐shape show loss of stem conductivity from approximately zero tension, and if true, this suggests that some plants either refill embolized vessels every night or function well with a high percentage of vessels permanently embolized. The R‐shaped curves occur more in species with vessels greater than half the length of the segments spun in a centrifuge. Many have hypothesized that the embolism is seeded by agents (bubbles or particles) entering the stem end and travelling towards the axis of rotation in long vessels, causing premature cavitation. VCs were measured on Robinia pseudoacacia L. by three different techniques to yield three different VCs; R‐shaped: Cavitron P50 = 0.30 MPa and S‐shaped: air injection P50 = 1.48 MPa and bench top dehydration P50 = 3.57 MPa. Stem conductivity measured in the Cavitron was unstable and is a function of vessel length when measured repeatedly with constant tension, and this observation is discussed in terms of stability of air bubbles drawn into cut‐open vessels during repeated Cavitron measurement of conductivity; hence, R‐shaped curves measured in a Cavitron are probably invalid.  相似文献   

15.
木本植物木质部栓塞脆弱性研究新进展   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部空穴化和栓塞是木本植物在干旱等条件下遭受水分胁迫时产生的木质部输水功能障碍, 在全球气候变化的大背景下, 栓塞脆弱性对干旱响应的研究已成为热点和重要内容。近年来有关木质部栓塞脆弱性与植物输水结构和耐旱性的关系已有大量研究并取得一定成果, 但是, 不同学者在不同地区对不同材料的研究结果存在很大不同。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结, 主要涉及木质部栓塞脆弱性(P50)及脆弱曲线的建立方法、木质部栓塞脆弱性与木质部结构(导管直径、导管长度、纹孔膜、木质部密度、纤维及纤维管胞)间的关系和木质部栓塞脆弱性与耐旱性的关系, 并对未来工作进行展望, 提出在未来的工作中应对同一树种使用Cochard Cavitron离心机法、Sperry离心机技术与传统方法建立的脆弱曲线进行比较验证、计算P50值、分析植物个体器官水平差异(根、茎、叶)、测定树种生理生态指标, 探索植物栓塞脆弱性与输水结构和耐旱性的关系, 从而评估不同类型植物在未来气候变化下的耐旱能力。  相似文献   

16.
《植物生态学报》2015,39(8):838
Xylem cavitation/embolism is the blockage of xylem conduits when woody plants suffer from water stress under drought and other environmental conditions, the study of embolism has become a hot and key topic under global climate change. Recent researches on the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance have made some progress, however, scholars reached different conclusions based on results from different regions or different materials. This paper reviews the current achievements and controversial viewpoints, which includes indicator of xylem embolism vulnerability (P50), method of vulnerability curve establishment, the relationship between embolism vulnerability and hydraulic architecture (vessel diameter, vessel length, pit area, wood density, fiber and fiber tracheid) and the relationship between embolism vulnerability and drought tolerance of woody plants. Future studies should use Cochard Cavitron centrifuge and Sperry centrifuge coupled with traditional methods to establish vulnerability curves, calculate P50, analyze the difference among different organisms (root, stem, leaf), and measure physiological and ecological indexes. Future studies should be aimed to explore the relationship between the vulnerability of xylem embolism and hydraulic architecture/drought tolerance and to assess drought tolerance ability of different species under future climate change.  相似文献   

17.
Recent work has suggested that plants differ in their relative reliance on structural avoidance of embolism versus maintenance of the xylem water column through dynamic traits such as capacitance, but we still know little about how and why species differ along this continuum. It is even less clear how or if different parts of a plant vary along this spectrum. Here we examined how traits such as hydraulic conductivity or conductance, xylem vulnerability curves, and capacitance differ in trunks, large‐ and small‐diameter branches, and foliated shoots of four species of co‐occurring conifers. We found striking similarities among species in most traits, but large differences among plant parts. Vulnerability to embolism was high in shoots, low in small‐ and large‐diameter branches, and high again in the trunks. Safety margins, defined as the pressure causing 50% loss of hydraulic conductivity or conductance minus the midday water potential, were large in small‐diameter branches, small in trunks and negative in shoots. Sapwood capacitance increased with stem diameter, and was correlated with stem vulnerability, wood density and latewood proportion. Capacitive release of water is a dynamic aspect of plant hydraulics that is integral to maintenance of long‐distance water transport.  相似文献   

18.
The centrifuge method for measuring the resistance of xylem to cavitation by water stress was modified to also account for any additional cavitation that might occur from a freeze-thaw cycle. A strong correlation was found between cavitation by freezing and mean conduit diameter. On the one extreme, a tracheid-bearing conifer and diffuse-porous angiosperms with small-diameter vessels (mean diameter <30 μm) showed no freezing-induced cavitation under modest water stress (xylem pressure = −0.5 MPa), whereas species with larger diameter vessels (mean >40 μm) were nearly completely cavitated under the same conditions. Species with intermediate mean diameters (30–40 μm) showed partial cavitation by freezing. These results are consistent with a critical diameter of 44 μm at or above which cavitation would occur by a freeze–thaw cycle at −0.5 MPa. As expected, vulnerability to cavitation by freezing was correlated with the hydraulic conductivity per stem transverse area. The results confirm and extend previous reports that small-diameter conduits are relatively resistant to cavitation by freezing. It appears that the centrifuge method, modified to include freeze–thaw cycles, may be useful in separating the interactive effects of xylem pressure and freezing on cavitation.  相似文献   

19.
Differences in the seasonal variation in stem water potential between the two shrub species Sorbus aucuparia and Sambucus nigra were related with their vulnerability to xylem cavitation. It was also demonstrated indirectly that the two species differ in the extent to which they reverse cavitation. Seasonal variation in stem water potential was investigated during three growing seasons with in situ stem psychrometers. Sorbus experienced wide water potential variations and reached a minimum of -4.2 MPa during drought. Under the same microclimatic conditions, Sambucus experienced consistent stem water potentials with a minimum of -1.7 MPa. The relationship between percentage loss in hydraulic conductivity (PLC) and water potential (hydraulic vulnerability curve) of the two species differed in shape: a flat curve with nearly total loss of conductivity at -6 MPa was found for SORBUS: Sambucus showed a steep vulnerability curve with 90% loss conductivity at -2.2 MPa. Thus, Sambucus is extremely vulnerable to cavitation, but Sorbus is an almost invulnerable species. This different cavitation resistance adjusted the ranges of field stem water potential that the species experienced. Finally, seasonal courses of naturally occurring (native) embolism were compared with calculated PLC courses. This comparison indicates that Sorbus did not refill embolized xylem vessels whereas Sambucus reversed embolism. It was concluded that species which are highly vulnerable to cavitation and drought-induced embolism need refilling of embolized vessels as well as isohydric water potential patterns as two strategies of survival.  相似文献   

20.
Vulnerability to water-stress-induced embolism of stems, petioles, and leaf midribs was evaluated for two rubber clones (RRIM600 and RRIT251). The xylem conduits were relatively vulnerable to cavitation with 50% of embolism measured for xylem pressures between –1 and –2 MPa. This feature can be related to the tropical-humid origin of the species. A distinct basipetal gradient of vulnerability was found, leaf midribs being the least vulnerable. Substantial variation in vulnerability to cavitation was found between the two clones only at the petiole level. A correlation was found between the stomatal behavior and the development of cavitation. Stomata were nearly closed when the xylem pressure reached the point of xylem dysfunction. Stomata may thus contribute to controlling the risk of cavitation. However, for one clone a poor correlation was found between stomatal regulation and petiole vulnerability. This was consistent with a high degree of embolism measured in the petioles after a soil drought event. Therefore, xylem cavitation might represent a promising criterion to evaluate the performance of rubber clones under drought conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号