首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
True fruit flies in the Rhagoletis pomonella sibling species group are at the center of a long-standing debate concerning modes of speciation. The allopatric separation of populations is widely thought to be a prerequisite for speciation in sexually reproducing animals. However, speciation in the R. pomonella group appears to have occurred sympatrically as a consequence of these flies shifting and adapting to new host plants. The sympatric shift of R. pomonella from its native host hawthorn to introduced domestic apple, which occurred approximately 150 years ago, provides a test of whether host specialization is sufficient to allow populations to differentiate in the absence of geographic barriers to gene flow. We report the results of a geographic study of allozyme variation for hawthorn and apple infesting populations of R. pomonella across the eastern United States and Canada. Six loci consistently show significant allele frequency differences at paired apple and hawthorn sites. These six loci map to three different regions of the genome, and linkage disequilibrium exists between non-allelic genes within each of these regions. Allele frequencies for five of the six loci displaying host associated differences also co-vary significantly with latitude. Inter-host divergence is, therefore, superimposed on north-south clinal patterns of intra-host variation such that the magnitude of genetic divergence between hawthorn and apple flies is a function of latitude. The findings suggest that partially reproductively isolated “host races” can evolve in sympatry as a consequence of R. pomonella infesting new host plants. Host recognition and host associated developmental traits are discussed as important factors differentiating apple and hawthorn flies.  相似文献   

2.
True fruit flies belonging to theRhagoletis pomonella (Walsh) sibling species complex have been proposed to speciate sympatrically by shifting and adapting to new host plants. Here, we report the results from a series of ecological and genetic experiments conducted at a study site near Grant, Michigan, U.S.A., aimed at clarifying the relationship between host specialization and reproductive isolation for these flies. Our findings indicate that apple (Malus pumila) and hawthorn (Crataegus mollis) infesting populations ofR. pomonella are partially allochronically isolated. Differences in the timing of adult eclosion account for part of the allochronic divergence, as apple adults emerge approximately ten days earlier than hawthorn flies in the field. Genetic analyses across different life history stages of the fly show that adults do not randomly move between apple and hawthorn trees, but trend to attack the same species of plant that they infested as larvae. Estimates of interhost migration from the allozyme data suggest that from 2.8 to 10% of the apple population is of hawthorn origin and that over 20% of the hawthorn population is of apple origin. The length and quality of the growing season appear to affect the genetic composition of the host races, as allele frequencies in the hawthorn population are correlated with ambient temperature and rainfall during the spring of the preceding year. Finally, allele frequencies for six allozyme loci displaying host associated differentiation also show significant linear regressions with the timing of adult eclosion within both races. These regressions establish a link between allozyme loci displaying inter-host differentiation and a developmental trait (adult eclosion) responsible for partially isolating the races. The slopes of the regressions are paradoxical, however, as they suggest that apple adults should eclose later, not earlier, than hawthorn flies. We conclude by discussing potential resolutions to the eclosion time paradox.  相似文献   

3.
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host‐related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)‐infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430‐km transect, where the host races co‐occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion‐associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.  相似文献   

4.
In previous flight‐tunnel tests Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) flies originating from domestic apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood (Cornus florida), displayed greater numbers of upwind flights to blends of volatiles identified from their natal fruit compared to non‐natal fruit. Here, we show that when certain non‐host volatiles were added to the host blend, significantly fewer apple, hawthorn, and dogwood flies exhibited sustained upwind flight to the source. Specifically, the upwind flight of apple flies to the apple blend was significantly antagonized by the addition of the hawthorn or dogwood blends, the addition of 3‐methylbutan‐1‐ol alone (a key volatile for hawthorn and dogwood flies), or the combination of 3‐methylbutan‐1‐ol and another key dogwood volatile, 1‐octen‐3‐ol. Similarly, the upwind flight of dogwood and hawthorn flies to their respective natal blends was antagonized by the addition of the apple blend or the key apple volatile butyl hexanoate. Experiments were also conducted to determine whether non‐natal fruit volatiles could disrupt the close‐range flight response of flies to the visual stimulus of fruit alone, represented by an odorless red sphere. Tests with apple‐origin flies showed that when the hawthorn blend, the dogwood blend, or the key antagonist volatiles from each (3‐methylbutan‐1‐ol and 1‐octen‐3‐ol) were added to a red sphere fruit mimic, significantly lower proportions of flies were captured, compared with captures when no odor was present. Our results support the hypothesis that agonist and antagonist properties of fruit volatiles can play an important role in host recognition/discrimination by Rhagoletis flies.  相似文献   

5.
Understanding speciation requires discerning how reproductive barriers to gene flow evolve between previously interbreeding populations. Models of sympatric speciation for phytophagous insects posit that reproductive isolation can evolve in the absence of geographic isolation as a consequence of an insect shifting and ecologically adapting to a new host plant. One important adaptation contributing to sympatric differentiation is host-specific mating. When organisms mate in preferred habitats, a system of positive assortative mating is established that facilitates sympatric divergence. Models of host fidelity generally assume that host choice is determined by the aggregate effect of alleles imparting positive preferences for different plant species. But negative effect genes for avoiding nonnatal plants may also influence host use. Previous studies have shown that apple and hawthorn-infesting races of Rhagoletis pomonella flies use volatile compounds emitted from the surface of fruit as key chemosensory cues to recognize and distinguish between their host plants. Here, we report results from field trials indicating that in addition to preferring the odor of their natal fruit, apple and hawthorn flies, and their undescribed sister species infesting flowering dogwood (Cornus florida), also avoid the odors of nonnatal fruit. We discuss the implications of nonnatal fruit avoidance for the evolutionary dynamics and genetics of sympatric speciation. Our findings reveal an underappreciated role for habitat avoidance as a potential postmating, as well as prezygotic, barrier to gene flow.  相似文献   

6.
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life‐history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval‐infested apples 40–65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early‐ and late‐maturing apple varieties in the region. To investigate the life‐history timing hypothesis, we used a field‐based experiment to characterize the host‐associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host‐fruiting time generate allochronic isolation among apple‐, black hawthorn‐, and ornamental hawthorn‐associated fly populations. We conclude that host‐associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host‐fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.  相似文献   

7.
The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind‐directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations.  相似文献   

8.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) originating from domesticated apple (Malus pumila), hawthorn (Crataegus mollis) (Rosaceae), and flowering dogwood (Cornus florida) (Cornaceae) were tested sequentially in flight‐tunnel assays to volatile blends previously identified from the three fruit types. The majority of flies flew to odor sources containing their natal blend (68–83%). Some flies from each fruit type also flew to non‐natal fruit blends (11–39%), but of these non‐natal responders the vast majority were flies that responded to their natal blend as well. The results indicate that individual flies within R. pomonella populations infesting different host types have different degrees of specificity with respect to discriminating among fruit volatile blends, and that a moderate proportion of apple, hawthorn, and dogwood flies (10–30%) are broad responders, with the capacity to recognize and orient to more than one blend. The observed variability in response specificity could facilitate sympatric shifts to new host plants.  相似文献   

9.
McPheron BA  Smith DC  Berlocher SH 《Genetics》1988,119(2):445-451
We examined electrophoretic variability at five enzyme loci in the apple maggot fly, Rhagoletis pomonella, on a microgeographic scale. Treating flies from individual hawthorn trees as separate populations, we estimated F(ST) values from allele frequencies. The results indicate that there is significant allele frequency heterogeneity among fly populations over a small spatial scale at some loci but not at others. This variation among loci in degree of differentiation is itself statistically significant, casting doubt on the role of genetic drift in maintaining the heterogeneity. There is also heterogeneity between years in flies from a given tree. These data provide a baseline with which future work on genetic differentiation among apple maggot populations associated with different species of host plants may be compared.  相似文献   

10.
In previous studies, we have shown that apple and hawthorn populations of Rhagoletis pomonella (Diptera: Tephritidae) represent partially reproductively isolated and genetically differentiated host races; a result consistent with predictions of sympatric speciation models. The geographic pattern of allozyme variation for these flies is complex, however, as inter-host differences are superimposed on latitudinal allele frequency clines within the races. In addition, pronounced allele frequency shifts exist among R. pomonella populations across three major ecological transition zones in the mid-western United States. This suggests that selection related to environmental heterogeneity is responsible for the allele frequency shifts, but does not rule out secondary contact as an alternative possibility. Resolution of this issue is important, because if secondary contact is involved, then we would have to reassess the relationship host race formation has with speciation in the R. pomonella group.Here, we present results from a detailed genetic analysis of fly populations spanning the deciduous/prairie transition zone near the border between the states of Wisconsin and Illinois. Allele frequencies for hawthorn populations within the zone formed spikes, rather than the expected steps, and these frequency peaks correlated with variation in local ambient temperature conditions. Ambient temperature, and not secondary contact, therefore appears to be an important determinant of the shape of R. pomonella allele frequency clines. Allele frequency heterogeneity was also observed among apple populations, but was less pronounced compared to that for hawthorn flies. This suggests that ambient temperature differentially affects the host races, possibly through differences in the fruiting phenologies of apple and hawthorn trees. Several pairs of linked loci displayed concordant allele frequency changes and were in disequilibrium among both apple and hawthorn populations along the Wisconsin/Illinois transect. Although we do not know the reason for the observed pattern of disequilibrium, site to site variation in levels of inter-host migration, coupled with selection, seem the most likely explanations. We conclude by discussing how host specific adaptations, such as those associated with ambient temperature, may interact with host recognition traits to drive the sympatric speciation process for R. pomonella group flies.  相似文献   

11.
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this “natural experiment” to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.  相似文献   

12.
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.  相似文献   

13.
Evidence suggests that the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae) is undergoing sympatric speciation (i.e., divergence without geographic isolation) in the process of shifting and adapting to a new host plant. Prior to the introduction of cultivated apples (Malus pumila) in North America, R. pomonella infested the fruit of native hawthorns (Crataegus spp.). However, sometime in the mid-1800s the fly formed a sympatric race on apple. The recently derived apple-infesting race shows consistent allele frequency differences from the hawthorn host race for six allozyme loci mapping to three different chromosomes. Alleles at all six of these allozymes correlate with the timing of adult eclosion, an event dependent on the duration of the overwintering pupal diapause. This timing difference differentially adapts the univoltine fly races to an approximately 3- to 4-week difference in the peak fruiting times of apple and hawthorn trees, partially reproductively isolating the host races. Here, we report finding substantial gametic disequilibrium among allozyme and complementary DNA (cDNA) markers encompassing the three chromosomal regions differentiating apple and hawthorn flies. The regions of disequilibrium extend well beyond the previously characterized six allozyme loci, covering substantial portions of chromosomes 1, 2, and 3 (haploid n = 6 in R. pomonella). Moreover, significant recombination heterogeneity and variation in gene order were observed among single-pair crosses for each of the three genomic regions, implying the existence of inversion polymorphism. We therefore have evidence that genes affecting diapause traits involved in host race formation reside within large complexes of rearranged genes. We explore whether these genomic regions (inversions) constitute coadapted gene complexes and discuss the implications of our findings for sympatric speciation in Rhagoletis.  相似文献   

14.
Here, we investigate the evolutionary history and pattern of genetic divergence in the Rhagoletis pomonella (Diptera: Tephritidae) sibling species complex, a model for sympatric speciation via host plant shifting, using 11 anonymous nuclear genes and mtDNA. We report that DNA sequence results largely coincide with those of previous allozyme studies. Rhagoletis cornivora was basal in the complex, distinguished by fixed substitutions at all loci. Gene trees did not provide reciprocally monophyletic relationships among US populations of R. pomonella, R. mendax, R. zephyria and the undescribed flowering dogwood fly. However, private alleles were found for these taxa for certain loci. We discuss the implications of the results with respect to identifiable genetic signposts (stages) of speciation, the mosaic nature of genomic differentiation distinguishing formative species and a concept of speciation mode plurality involving a biogeographic contribution to sympatric speciation in the R. pomonella complex.  相似文献   

15.
An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis (Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domestica Borkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host-associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple-infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life-history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasii Lindl.) and an introduced species (Crataegus monogyna Jacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi-directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply that R. pomonella can both possess and retain extensive-standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.  相似文献   

16.
Summary One of the most controversial putative cases of host race formation in insects is that of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae). A principal cause of the controversy is lack of relevant data. In laboratory and field enclosure experiments, we compared the host acceptance behavior of sympatric populations of flies originating from naturally infested hawthorn (the native host) and apple (an introduced host) in Amherst, Massachusetts or East Lansing, Michigan. In general, hawthorn fruit were accepted for ovipositional attempts nearly equally by apple and hawthorn origin females, whereas apples were accepted much more often by apple than hawthorn origin females. Similarly, males of apple and hawthorn origin exhibited about equal duration of residence on hawthorn fruits as sites at which to acquire potential mates, while males of apple origin tended to reside substantially longer than males of hawthorn origin on apples. Irrespective of fly origin, both sexes always responded more positively to hawthorn fruit than to apples. Because all flies assayed were naive (ruling out effects of prior host experience of adults) and because tests revealed no influence of pre-imaginal fruit exposure on pattern of host fruit acceptance by females, the combined evidence suggests the phenotypic differences we observed in host response pattern between hawthorn and apple origin flies may have an underlying genetic basis. Further tests showed that while larval progeny of flies of each origin survived better in naturally growing hawthorn fruit than in naturally growing apples, there was no differential effect of fly origin on larval survival ability in either host. We discuss our findings in relation to restriction in gene flow between sympatric populations of R. pomonella and in relation to current models of host shifts in insects.  相似文献   

17.
Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself.  相似文献   

18.
The Rhagoletis pomonella species group has for decades been a focal point for debate over the possibility of sympatric speciation via host shift. Here I present the first extensive analysis of genetic (allozyme) divergence in the pomonella group, including all known taxa/populations except the allopatric Mexican population of R. pomonella. The phylogeny is estimated for all four described species (pomonella, mendax, zephyria, and cornivora) plus two undescribed species (the "flowering dogwood fly" and "sparkleberry fly"). Allozyme data for two additional populations of uncertain status (the "plum fly" and "mayhaw fly") are presented for the first time. Two data sets were analyzed, one for 17 loci from 77 populations and one for an additional 12 loci for a subset of 12 of these populations, with more than 4000 flies analyzed in total. Interspecific Nei unbiased genetic distances were generally small, being as low as 0.040. No fixed autapomorphic alleles beyond those already known for R. cornivora and R. zephyria were revealed in the new data, but several loci displaying frequency patterns useful in discriminating the species were discovered. The phylogenetic placement of the flowering dogwood fly differed depending on whether a molecular clock was assumed (UPGMA of Nei distance) or not assumed (frequency parsimony) for tree building. Other than this, however, trees under either assumption were essentially identical. The best tree was used to test the prediction of the sympatric speciation hypothesis that sister taxa should be broadly sympatric. This prediction was not rejected, but the best tree was weakly supported by bootstrap analysis. An unexpected finding was that R. pomonella populations representing ends of its strong latitudinal clines did not cluster together. One possible explanation is that the current R. pomonella is the result of a genetic fusion of two previously isolated, genetically differentiated populations. Such a fusion prior to the origin of the other species in the group could contribute to the poor resolution of the phylogeny.  相似文献   

19.
The apple maggot fly, Rhagoletis pomonella, Walsh (Diptera: Tephritidae), provides a unique opportunity to address the issue of host-related fitness trade-offs for phytophagous insects. Rhagoletis pomonella has been controversial since the 1860's when Benjamin Walsh cited the fly's shift from hawthorn (Crataegus spp.) to apple (Malus pumila) as an example of an incipient sympatric speciation event. Allozyme and mark-release-recapture studies have subsequently confirmed the status of apple and hawthorn flies as partially reproductively isolated and genetically differentiated host races, the hypothesized initial stage in sympatric divergence. Here, we review the ecological and genetic evidence for host-plant mediated selection in R. pomonella. We reach the following three major conclusions: First, although developmental timing is not everything, it is a good deal of the story. Differences in the fruiting phenologies of apple and hawthorn trees exert different selection pressures on the diapause and eclosion time characteristics of the host races. In particular, the 3-week earlier mean fruiting phenology of apples in eastern North America appears to select for a slower rate of metabolism or deeper pupal diapause in apple than hawthorn flies. Second, host-related fitness trade-offs for R. pomonella may not be due to disruptive selection affecting any one specific life-history stage. Rather, it is the sum total of directional selection pressures acting across different life-stages that generates divergent selection on apple and hawthorn flies. For example, selection favors the alleles Me 100, Acon-2 95 and Mpi 37 (or linked genes) in the larval stage in both host races. However, these same alleles are disfavored in the pupal stage to follow, where they correlate with early adult eclosion, and by inference premature diapause termination. Because apple trees fruit an average of 3 weeks earlier than hawthorn trees, this counter-balancing selection is stronger on apple-fly pupae. The net result is that the balance of selective forces is different between apple and hawthorn flies, helping to maintain the genetic integrity of the host races in sympatry in the face of gene flow. Finally, natural R. pomonella populations harbor a good deal of genetic variation for development-related traits. This variation allows fly populations to rapidly respond to temporal vagaries in local environmental conditions across years, as well as to broad-scale geographic differences that exist across the range of the species. Perhaps most importantly, this variation gives R. pomonella the flexibility to explore and adapt to novel plants. Taken together, our results underscore how difficult it can be to document host plant-related fitness trade-offs for phytophagous insects due to the need to consider details of the entire life-cycle of a phytophagous insect. Our findings also show how reproductive isolation can arise as a by-product of host-associated adaptation in insects, a central theme for models of sympatric speciation via host shifts.  相似文献   

20.
Male apple maggot flies spend considerable time residing on individual host fruit as territories on which they force-copulate arriving females in search of oviposition sites. Here, we present evidence from investigations in nature and the laboratory that shows the propensity of males to reside on a hawthorn or apple fruit as a territory is significantly modifiable through prior experience with fruit and, hence, involves learning. Previous studies revealed that after a female apple maggot fly, Rhagoletis pomonella, arrived on a host hawthorn or apple fruit, its propensity to accept or reject that fruit for egg-laying was similarly modifiable through prior fruit-exposure experience and also involved learning. We discuss how host fruit learning in males and females, in concert with genetic-based differences in host fruit residence and acceptance behavior between populations of flies originating from hawthorn and apple, could give rise to a reduction in gene flow between populations of flies on these two host types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号