首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A highly efficient site-specific mutagenesis method has been devised to exclude wild-type DNA from incorporation into the transformed cells. Two complementary oligonucleotides, corresponding to a target sequence of a DNA molecule and containing an insertion mutation which created an endonuclease restriction site, were synthesized. By using the wild-type DNA molecule flanked by two restriction sites on each side of the target region as a template, the two oligonucleotide primers were extended, enriched, and isolated. The extended products, in turn, were used as templates in a polymerase chain reaction to obtain a mutagenized double-stranded DNA fragment which was conveniently cloned into plasmids by using the flanking restriction sites. Escherichia coli cells transformed by these plasmids were subject to large-scale analysis. One hundred percent of the transformants examined by colony hybridization, restriction enzyme analysis, and DNA sequencing were found to contain the mutant DNA sequence.  相似文献   

2.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

3.
Dennis JJ  Zylstra GJ 《BioTechniques》2002,33(2):310, 312, 314-310, 312, 315
A method was devised for generating nested deletions in DNA that exploits the difference in frequency of restriction sites recognized by compatible restriction endonucleases. A cloning vector was constructed that contains no common blunt-end or RsaI restriction sites and two 8-bp blunt-end restriction sites flanking a commodious multiple cloning site. DNA fragments are cloned into the multiple cloning site using blue-white selection, and nested deletions are generated by digesting the resulting plasmid with either SwaI or PmeI and partially digesting the insert DNA with RsaI. The DNAs are ligated and transformed, producing afamily of plasmids with different-sized deletions. The DNA sequence of these inserts can be rapidly determined, and the overlapping sequences can be assembled in silico to produce a large DNA contig. Nested deletions generated in this manner can also be used for the structure-function analysis of proteins.  相似文献   

4.
目的:DPC4/Smad4基因RNA干扰靶点的设计和RNA干扰靶点慢病毒载体制备。方法:针对DPC4/Smad4基因序列,并利用网站设计程序,依据RNA干扰序列设计的原则,设计多个RNA干扰靶点序列。根据设计经验和设计软件将其进行评估测定,选择最佳动力学参数靶点进入其后续的实验流程;生工生物合成含干扰序列的DNAoligo,具有严格的检测体系(PAGE纯化体系),其两端含酶切位点粘端,直接连入酶切后的RNA干扰载体上。将连接好的产物转入制备好的细菌感受态细胞,并且对长出的克隆进行酶切鉴定。然后挑选出阳性克隆测序,进行测序比对后,鉴定阳性的克隆即为构建成功的目的基因RNA干扰慢病毒载体。将构建的慢病毒载体以及辅助包装载体质粒共转染到293T细胞。收获含有病毒的细胞培养上清,浓缩后进行滴度测定,并检测其感染性。另外应用荧光实时定量PCR检测在感染的293T细胞中敲减效果。结果:成功构建DPC4/Smad4shRNA的慢病毒载体LVshSmad4,并成功制备DPC4/Smad4shRNA慢病毒,三株病毒感染细胞后均具有有效的敲减效应,其中SHl最为显著。结论:DPC4/Smad4基因RNA干扰靶点的成功设计和RNA干扰靶点慢病毒制备,为以后探讨DPC4/Smad4基因与肿瘤的相关性治疗提供了实验基础。  相似文献   

5.
Plasmid DNA modified by in vitro treatments was transformed in E. coli bacterial cells. A streptomycin-resistant strain, carrying the peculiar rpsL421 mutation, was used as a recipient for the cloning vector pNO1523, which carries the wild-type (streptomycin-sensitive) rpsL allele. Transformants were streptomycin-sensitive unless a change in plasmid sequence had occurred. The analysis of the MaeI restriction pattern of plasmids isolated from streptomycin-resistant transformants, together with the detection of the phenotype that they conferred to a streptomycin-dependent strain, allowed us to identify plasmids that had undergone recombination with the host chromosome. The number of these plasmids exceeded by far that of plasmids resulting from mutational events.  相似文献   

6.
通过小片段基因组文库的构建获得工业生产菌HS007的若干基因组片段,并以大肠杆菌-链霉菌穿梭质粒pHJL400为载体,构建了5个插入了特异性标记序列及抗性筛选标记的重组质粒pHJL02AFOH,pHJL07AFOH,pHJL08AFOH,pHJL10AFOH和pHJL12AFOH.利用这些质粒转化工业生产菌株HS007,获得具有特异性标记序列和相应抗性的标记菌株02-72,07-44,08-02,10-81和12-58,其中02-72和12-58的生产能力不受插入片段的影响.利用重组质粒pSP02AFOH上抗性标记两端两个FRT序列的分子内重组去除抗性标记,并以大肠杆菌一链霉菌穿梭质粒pGH112替换该质粒的载体部分,得到重组质粒pGH02FH.以pGH02FH转化标记菌株02-72,获得具有特异性标记序列而没有相应抗性的菌株02-72-36.发酵结果表明,标记片段的插入不影响菌株02-72-36的生产能力.本方法建立了链霉菌工业菌种基因组标记的技术平台.  相似文献   

7.
S Chang  D Ho  J R McLaughlin  S Y Chang 《Gene》1984,29(3):255-261
Circular heteroduplex DNA molecules introduced into Escherichia coli-competent cells are converted to new recombinant plasmids as a result of enzymatic actions in vivo. A pair of plasmids with partial sequence homology were each linearized at a different position with restriction enzymes, and the termini were made flush with the single-strand-specific S1 nuclease. Duplex molecules were then formed by melting and annealing these plasmid DNAs together. In contrast to linear homoduplex molecules, heteroduplexes circularize and therefore transform E. coli efficiently. Unique DNA sequences on each of the parental strands in the transforming heteroduplexes can be selectively incorporated or deleted as a result of in vivo enzymatic activities in transformed cells. This method permits the generation of new recombinant sequences in vivo without relying solely on the presence of convenient restriction sites for manipulation of DNA fragments in vitro.  相似文献   

8.
Use of the polymerase chain reaction (PCR) provides a convenient means of generating DNA fragments for insertion into plasmids. Large quantities of the desired insert, bounded by convenient restriction sites, may be synthesized. The primers are chosen to span a known region of interest, and extended at their 5′-ends to include the desired restriction sites. Amplification of the target sequence is followed by precipitation of the product with ammonium acetate and ethanol to remove the primers. A small amount of product is analyzed by gel electrophoresis to ensure correct amplification, the remainder is digested with the appropriate restriction enzyme(s). Restricted insert DNA is added to similarly restricted plasmid DNA in several ratios and incubated with DNA ligase to recircularize. Ligation products are used to transform competent bacteria. Clones containing inserts are identified by restriction digestion of plasmid minipreps from bacterial colonies.  相似文献   

9.
Positive-selection vectors utilizing lethality of the EcoRI endonuclease   总被引:12,自引:0,他引:12  
I Kuhn  F H Stephenson  H W Boyer  P J Greene 《Gene》1986,42(3):253-263
The construction and use of a series of positive-selection vectors are described. These plasmids encode EcoRI endonuclease, the synthesis of which is under the control of the lacUV5 promoter. The pKG2 plasmid encodes a wild-type EcoRI endonuclease. In the absence of EcoRI methylase, the endonuclease is lethal. Cloning into any of the unique restriction sites within the endonuclease-coding gene allows survival of the transformed EcoRI-methylase-less host. The pKGW and pKGS plasmids encode an altered EcoRI endonuclease which, when repressed in a lacIQ host, allows survival in the absence of the methylase. Induction with IPTG, however, results in cell death as a result of high-level EcoRI synthesis. Cloning into any of the unique restriction sites within the EcoRI gene of pKGW or pKGS allows survival of derepressed transformed cells. These vectors strongly select for cloning events which inactivate the endonuclease gene.  相似文献   

10.
目的:克隆丙型肝炎病毒核心蛋白基因及其上游DNA序列,为此基因的表达研究作准备。方法:用反转录和PCR方法从HCV的总RNA中扩增得到核心蛋白基因及其上游DNA序列,连接到pMD18-T载体上,用限制性内切酶切下目的基因,插入到巴斯德毕赤酵母表达载体pPIC9K中,构建成重组质粒,测序证明正确后,再将目的基因在毕赤酵母中进行克隆,鉴定。结果:重组质粒转化毕赤酵母后,经PCR鉴定,证明形成了目的基因的克隆。结论:应用毕赤酵母作为受体菌,pPIC9K为载体,成功克隆了HCV核心蛋白基因。  相似文献   

11.
12.
A substantial literature exists characterizing transgene locus structure from plants transformed via Agrobacterium and direct DNA delivery. However, there is little comprehensive sequence analysis of transgene loci available, especially from plants transformed by direct delivery methods. The goal of this study was to completely sequence transgene loci from two oat lines transformed via microprojectile bombardment that were shown to have simple transgene loci by Southern analysis. In line 3830, transformed with a single plasmid, one major and one of two minor loci were completely sequenced. Both loci exhibited rearranged delivered DNA and flanking genomic sequences. The minor locus contained only 296 bp of two non-contiguous fragments of the delivered DNA flanked by genomic (filler) DNA that did not originate from the integration target site. Predicted recognition sites for topoisomerase II and a MAR region were observed in the transgene integration target site for this non-functional minor locus. Line 11929, co-transformed with two different plasmids, had a single relatively simple transgene locus composed of truncated and rearranged sequences from both delivered DNAs. The transgene loci in both lines exhibited multiple transgene and genomic DNA rearrangements and regions of scrambling characteristic of complex transgene loci. The similar characteristics of recombined fragments and junctions in both transgenic oat lines implicate similar mechanisms of transgene integration and rearrangement regardless of the number of co-transformed plasmids and the level of transgene locus complexity.  相似文献   

13.
The SfiI endonuclease differs from other type II restriction enzymes by cleaving DNA concertedly at two copies of its recognition site, its optimal activity being with two sites on the same DNA molecule. The nature of this communication event between distant DNA sites was analysed on plasmids with recognition sites for SfiI interspersed with recombination sites for resolvase. These were converted by resolvase to catenanes carrying one SfiI site on each ring. The catenanes were cleaved by SfiI almost as readily as a single ring with two sites, in contrast to the slow reactions on DNA rings with one SfiI site. Interactions between SfiI sites on the same DNA therefore cannot follow the DNA contour and, instead, must stem from their physical proximity. In buffer lacking Mg2+, where SfiI is inactive while resolvase is active, the addition of SfiI to a plasmid with target sites for both proteins blocked recombination by resolvase, due to the restriction enzyme bridging its sites and thus isolating the sites for resolvase into separate loops. The extent of DNA looping by SfiI matched its extent of DNA cleavage in the presence of Mg2+.  相似文献   

14.
Retroviral vectors containing human FMS protooncogene cDNA were reconfigured to allow single-step excision and reinsertion of restriction fragments encoding short segments of the extracellular domain of the colony-stimulating factor 1 receptor (CSF-1R). Fragments ligated into M13 bacteriophages were subjected to random chemical mutagenesis on both strands and recloned into the parental vector to create libraries of FMS genes containing mutations restricted to predefined target cassettes. Transfection of retroviral vector libraries into NIH/3T3 cells gave rise to transformed foci from which cellular DNA was amplified by the polymerase chain reaction (PCR), using primers flanking the mutagenized target sequences. Amplified fragments from individual primary transformants were recloned into intact FMS vector plasmids, and those with transforming activity were subjected to nucleotide sequence analysis. Alternatively, retroviruses rescued from transformed cells by superinfection with helper virus were used to generate secondary transformants containing unique copies of proviral DNA, whose sequences were determined after PCR amplification. Novel activating mutations were identified within sequences separating the third and fourth immunoglobulin-like loops, as well as within non-covalently stabilized loop 4 of the CSF-1R extracellular domain. Thus, FMS mutations able to convert human CSF-1R to an active oncoprotein are not restricted to those previously identified at codon 301. This approach should be generally applicable for defining activating mutations in related growth factor receptors, including those for platelet-derived growth factor and Steel factor (KIT ligand), in which ligand-independent oncoprotein variants have not been identified.  相似文献   

15.
Optimized protocols and plasmids for in vivo cloning in yeast   总被引:1,自引:0,他引:1  
Kitazono AA 《Gene》2011,484(1-2):86-89
Saccharomyces cerevisiae has proven a valuable system for the construction of plasmids via gap repair or in vivo cloning. The method allows cloning with superior accuracy and without the need to use restriction enzymes. However, despite its remarkable efficiency, the process may occasionally require the screening of large number of candidates. We have previously reported that by simply using shuttle plasmids that allow blue/white selection in Escherichia coli, it is possible to pre-select for positive clones. Here, we demonstrate that the same strategy can be used to assemble plasmids from several ectopic DNA fragments, which are all introduced in yeast cells by a simple transformation step. Further, to facilitate the subcloning of the fragment cloned into other targeting or expression vectors, the multi-cloning sites of three shuttle plasmids have been extended to include fifteen new restriction enzyme recognition sites.  相似文献   

16.
17.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

18.
Using DNA molecules to construct a structural scaffold for nanotechnology is largely accepted. In this article, we report on two methods for constructing a figure-eight structure of DNA molecules having a relatively high yield that could be used further as a scaffold for nanotechnology applications. In the first method, two plasmids were constructed that, on digestion with a restriction endonuclease producing nicks in the corresponding sites and after heating, produced complementary single-stranded sequences, enabling the plasmids to hybridize to each other and forming a figure-eight structure. The formation of the figure-eight structure was analyzed by restriction analysis and gel electrophoresis as well as by atomic force microscopy. The second method makes use of the bacteriophage M13 that is obtained as either a single- or double-stranded circular DNA molecule. Two M13 molecules harboring complementary sequences were constructed and produced a figure-eight structure on hybridization. The methods described here could be used further for the construction of nanoelectronic devices.  相似文献   

19.
The non-homologous end-joining (NHEJ) pathway is a mechanism to repair DNA double strand breaks, which can introduce mutations at repair sites. We constructed new cellular systems to specifically analyze sequence modifications occurring at the repair site. In particular, we looked for the presence of telomeric repeats at the repair junctions, since our previous work indicated that telomeric sequences could be inserted at break sites in germ-line cells during primate evolution. To induce specific DNA breaks, we used the I-SceI system of Saccharomyces cerevisiae or digestion with restriction enzymes. We isolated human and hamster cell lines containing the I-SceI target site integrated in a single chromosomal locus and we exposed the cells to a continuous expression of the I-SceI endonuclease gene. Additionally, we isolated human cell lines that expressed constitutively the I-SceI endonuclease and we introduced the target site on an episomal plasmid stably transfected into the cells. These strategies allowed us to recover repair junctions in which the I-SceI target site was modified at high frequency (100% in hamster cells and about 70% in human cells). Finally, we analyzed junctions produced on an episomal plasmid linearized by restriction enzymes. In all the systems studied, sequence analysis of individual repair junctions showed that deletions were the most frequent modifications, being present in more than 80% of the junctions. On the episomal plasmids, the average deletion length was greater than at intrachromosomal sites. Insertions of nucleotides or deletions associated with insertions were rare events. Junction organization suggested different mechanisms of formation. To check for the insertion of telomeric sequences, we screened plasmid libraries representing about 3.5 x 10(5) junctions with a telomeric repeat probe. No positive clones were detected, suggesting that the addition of telomeric sequences during double strand break repair in somatic cells in culture is either a very rare event or does not occur at all.  相似文献   

20.
B Michel  B Niaudet    S D Ehrlich 《The EMBO journal》1982,1(12):1565-1571
We have constructed plasmids carrying direct internal repeats 260-2000 bp long. Monomers of such plasmids transformed Bacillus subtilis competent cells. The efficiency of transformation varied with the square of the length of repeats. The transformed clones harbored either the entire transforming plasmid and the plasmid arising by recombination between the repeats, or only the latter plasmid. Internally-repeated plasmids linearized by in vitro cleavage with restriction endonuclease could transform, yielding clones which exclusively harbored a plasmid resulting from recombination between the repeats. When the transforming plasmid carried repeats which differed slightly, conversion of one repeat into the other could occur. The following model of plasmid transformation accounts for these data: (1) plasmid DNA is cleaved and rendered linear in contact with competent cells; (2) a linear, at least partially double-stranded plasmid molecule is introduced or formed by repair within the cell; (3) a circular viable plasmid is produced by recombination between repeats carried on this molecule; (4) alternatively, a viable plasmid is produced by repairing the cut within one of the repeats by DNA synthesis which uses the other repeat as a template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号