首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

2.
An NAD+-dependent alcohol dehydrogenase (ADH) was purified to homogeneity from an aerobic strain of Bacillus stearothermophilus, DSM 2334 (ADH 2334), and compared with the ADH from B. stearothermophilus NCA 1503 (ADH 1503). When an antibody raised against ADH 2334 was used, no cross-reactivity with ADH 1503 was observed on Western blots; by means of an enzyme-linked-immunoabsorbent-assay ('e.l.i.s.a.') procedure, it was found that ADH 1503 had less than 6% of the antigenic activity of ADH 2334. Amino acid analyses detected very small differences in composition, equivalent to about 40 sequence changes, between the two enzymes. The new enzyme has the same six-amino-acid N-terminal sequence as ADH 1503. ADH 2334, but not ADH 1503, is reactive towards methanol; both enzymes can oxidize ethanol, propan-1-ol, butan-1-ol and butan-2-ol. The new enzyme has a distinctive pH optimum at pH 5.5-6 and has significantly lower KEthanolm and kEthanolcat. values than those of ADH 1503. From steady-state kinetic parameters of the reaction with ethanol, propan-1-ol and butan-1-ol, it was shown that ADH 2334 has an ordered mechanism in both directions, with NAD+ being the compulsory first substrate in alcohol oxidation and NADH release being the rate-limiting step. ADH 1503 has an ordered addition of NAD+ and alcohol, but NADH release is not rate-limiting.  相似文献   

3.
The heat of the reaction NAD(+)+propan-2-ol=NADH+acetone+H(+) was determined to be 42.5+/-0.6kJ/mol (10.17+/-0.15kcal/mol) from equilibrium measurements at 9-42 degrees C catalysed by yeast alcohol dehydrogenase. With the aid of thermochemical data for acetone and propan-2-ol the values of DeltaH=-29.2kJ/mol (-6.99kcal/mol) and DeltaG(0)=22.1kJ/mol (5.28kcal/mol) are derived for the reduction of NAD (NAD(+)+H(2)=NADH+H(+)). These values are consistent with analogous but less accurate data for the ethanol-acetaldehyde reaction. Thermodynamic data for the reduction of NAD and NADP are summarized.  相似文献   

4.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

5.
A constitutive NAD(+)-linked alcohol dehydrogenase was purified 338-fold from cells of Pseudomonas maltophilia MB11L grown on glucose. Maximum activity was observed with cyclic and linear secondary alcohols, with little activity seen against primary or aromatic alcohols. Substrate oxidation activity was maximal at pH 10.0, while substrate reduction was optimal at pH 4.5. The Km values for propan-2-ol, NAD+ and acetone were 87, 413 and 143 microM respectively. The enzyme is a tetramer with subunit Mr of approximately 44,000. It has an isoelectric point of 4.75, and was inhibited by chelating agents, thiol reagents and certain metal ions.  相似文献   

6.
A procedure for purification of oestrone sulphate sulphohydrolase from human placenta microsomes was elaborated. The use of Concanavalin-A-Sepharose chromatography made it possible to separate, for the first time, oestrone sulphate sulphohydrolase (Mr 36,000, optimum pH 7.0, Km 5.5 X 10(-5) M, specific activity 1563 nmol X min-1 X mg protein-1) from arylsulphatase C (Mr 45,000, optimum pH 7.6, Km 0.96 X 10(-3) M). The observed third subfraction showed both arylsulphate C and oestrone sulphate sulphohydrolase activity. Sigmoidal kinetics of oestrone sulphate sulphohydrolase after DEAE-cellulose chromatography (Mr 130,000) points to the allosteric character of the enzyme.  相似文献   

7.
A cold-labile glutamate dehydrogenase (GDH, EC 1.4.1.3) has been purified to homogeneity from the crude extracts of Azospirillum brasilense. The purified enzyme shows a dual coenzyme specificity, and both the NADPH and NADH-dependent activities are equally cold-sensitive. The enzyme is highly specific for the substrates 2-oxoglutarate and glutamate. Kinetic studies with GDH indicate that the enzyme is primarily designed to catalyse the reductive amination of 2-oxoglutarate. The NADP+-linked activity of GDH showed Km values 2.5 X 10(-4) M and 1.0 X 10(-2) M for 2-oxoglutarate and glutamate respectively. NAD+-linked activity of GDH could be demonstrated only for the amination of 2-oxoglutarate but not for the deamination of glutamate. The Lineweaver-Burk plot with ammonia as substrate for NADPH-dependent activity shows a biphasic curve, indicating two apparent Km values (0.38 mM and 100 mM) for ammonia; the same plot for NADH-dependent activity shows only one apparent Km value (66 mM) for ammonia. The NADPH-dependent activity shows an optimum pH from 8.5 to 8.6 in Tris/HCl buffer, whereas in potassium phosphate buffer the activity shows a plateau from pH 8.4 to 10.0. At high pH (greater than 9.5) amino acids in general strongly inhibit the reductive amination reaction by their competition with 2-oxoglutarate for the binding site on GDH. The native enzyme has a Mr = 285000 +/- 20000 and appears to be composed of six identical subunits of Mr = 48000 +/- 2000. The GDH level in A. brasilense is strongly regulated by the nitrogen source in the growth medium.  相似文献   

8.
Purified Drosophila lebanonensis alcohol dehydrogenase (Adh) revealed one enzymically active zone in starch gel electrophoresis at pH 8.5. This zone was located on the cathode side of the origin. Incubation of D. lebanonensis Adh with NAD+ and acetone altered the electrophoretic pattern to more anodal migrating zones. D. lebanonensis Adh has an Mr of 56,000, a subunit of Mr of 28 000 and is a dimer with two active sites per enzyme molecule. This agrees with a polypeptide chain of 247 residues. Metal analysis by plasma emission spectroscopy indicated that this insect alcohol dehydrogenase is not a metalloenzyme. In studies of the substrate specificity and stereospecificity, D. lebanonensis Adh was more active with secondary than with primary alcohols. Both alkyl groups in the secondary alcohols interacted hydrophobically with the alcohol binding region of the active site. The catalytic centre activity for propan-2-ol was 7.4 s-1 and the maximum velocity of most secondary alcohols was approximately the same and indicative of rate-limiting enzyme-coenzyme dissociation. For primary alcohols the maximum velocity varied and was much lower than for secondary alcohols. The catalytic centre activity for ethanol was 2.4 s-1. With [2H6]ethanol a primary kinetic 2H isotope effect of 2.8 indicated that the interconversion of the ternary complexes was rate-limiting. Pyrazole was an ethanol-competitive inhibitor of the enzyme. The difference spectra of the enzyme-NAD+-pyrazole complex gave an absorption peak at 305 nm with epsilon 305 14.5 X 10(3) M-1 X cm-1. Concentrations and amounts of active enzyme can thus be determined. A kinetic rate assay to determine the concentration of enzyme active sites is also presented. This has been developed from active site concentrations established by titration at 305 nm of the enzyme and pyrazole with NAD+. In contrast with the amino acid composition, which indicated that D. lebanonensis Adh and the D. melanogaster alleloenzymes were not closely related, the enzymological studies showed that their active sites were similar although differing markedly from those of zinc alcohol dehydrogenases.  相似文献   

9.
The NAD+ kinase (EC 2.7.1.23) of the filamentous fungus N. crassa is localized in cytosol. The activity in the dialyzed cell free extract has a pH optimum 8.3; it utilizes only ATP but not inorganic polyphosphates as a phosphoryl donor. A method for 200-fold purification of NAD+ kinase with a 20% yield has been developed. The procedure includes 105000 g centrifugation, fractionation with (NH4)2SO4, isoelectrofocusing in a Ultrodex layer and preparative electrophoresis in polyacrylamide gel. The molecular heterogeneity of NAD+ kinase was demonstrated by polyacrylamide gradient electrophoresis and by gel filtration through Sephadex G-200. The molecular weights of four individual forms of the enzyme are: 330000-338000, 305000-306000, 215000-229000 and 203000 Da. The Km values for the reaction catalyzed by purified NAD+ kinase for NAD+ and ATP are 3.0 X 10(-4) M and 0.9 X 10(-3) M, respectively.  相似文献   

10.
NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Westernblot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.  相似文献   

11.
C Cash  L Ciesielski  M Maitre  P Mandel 《Biochimie》1977,59(3):257-268
Succinic semialdehyde dehydrogenase from rat brain has been purified to electrophoretic homogeneity. It has a molecular weight of about 140, 000 and is composed of two apparently identical subunits. The reaction catalized by the pure protein is entirely dependent on endogenous --SH groups. The Kim (limits) for NAD and succinic semialdehyde are 2 X 10(-5) M and 1 X 10(-4) M respectively at the optimum pH of 8.6. Inhibition studies show that the reaction mechanism is a compulsory ordered on where NAD binds first followed by succinic semialdehyde.  相似文献   

12.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

13.
1. The kinetics of oxidation of butan-1-ol and propan-2-ol by NAD+, catalysed by yeast alcohol dehydrogenase, were studied at 25 degrees C from pH 5.5 to 10, and at pH 7.05 from 14 degrees to 44 degrees C, 2. Under all conditions studied the results are consistent with a mechanism whereby some dissociation of coenzyme from the active enzyme-NAD+-alcohol ternary complexes occurs, and the mechanism is therefore not strictly compulsory order. 3. A primary 2H isotopic effect on the maximum rates of oxidation of [1-2H2]butan-1-ol and [2H7]propan-2-ol was found at 25 degrees C over the pH range 5.5-10. Further, in stopped-flow experiments at pH 7.05 and 25 degrees C, there was no transient formation of NADH in the oxidation of butan-1-ol and propan-2-ol. The principal rate-limiting step in the oxidation of dependence on pH of the maximum rates of oxidation of butan-1-ol and propan-2-ol is consisten with the possibility that histidine and cysteine residues may affect or control catalysis.  相似文献   

14.
Aspergillus alcohol dehydrogenase is produced in response to growth in the presence of a wide variety of inducers, of which the most effective are short-chain alcohols and ketones, e.g. butan-2-one and propan-2-ol. The enzyme can be readily extracted from fresh or freeze-dried cells and purified to homogeneity on Blue Sepharose in a single step by using specific elution with NAD+ and pyrazole. The pure enzyme has Mr 290 000 by electrophoresis or gel filtration; it is a homopolymer with subunit Mr 37 500 by electrophoresis in sodium dodecyl sulphate; its amino acid composition corresponds to Mr 37 900, and the native enzyme contains one zinc atom per subunit. The enzyme is NAD-specific and has a wide substrate activity in the forward and reverse reactions; its activity profile is not identical with those of other alcohol dehydrogenases.  相似文献   

15.
Transketolase (sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycolaldehydetransferase, EC 2.2.1.1) was purified 16 000-fold from human red blood cells, using DEAE-Sephadex A-50, Sephadex G-150, FPLC on Mono P, and Sephadex G-100. The purified enzyme migrated as a single protein band on SDS-polyacrylamide gel electrophoresis. The FPLC step resolved transketolase into three peaks, designated I, II and III. From results of re-FPLC on Mono P, SDS-polyacrylamide gel electrophoresis, gel filtration, catalytic studies, amino acid analysis and immunological studies, it was concluded that I, II and III were originally the same protein, modified during storage and purification. Transketolase had a subunit (Mr 70 000) and appeared to be composed of two identical subunits. 1 mol of subunit contained 0.9 mol of thiamine pyrophosphate. The pH optimum of the reaction lay within the range 7.6-8.0, and the Km values were determined to be 1.5 X 10(-4) M for xylulose 5-phosphate and 4.0 X 10(-4) M for ribose 5-phosphate. Hg2+ and p-chloromercuribenzoate inhibited the enzyme reaction, and the inhibition of the latter disappeared upon the addition of cysteine. Thiamine and its phosphate esters did not, but cysteine (1 X 10(-2) M) and ethanol (10% and 1% v/v) did activate the enzyme reaction. Antibody prepared to II bound all forms of transketolase in the hemolysate, but inhibited the reaction only about 20%.  相似文献   

16.
1. The kinetics of oxidation of ethanol, propan-1-ol, butan-1-ol and propan-2-ol by NAD(+) and of reduction of acetaldehyde and butyraldehyde by NADH catalysed by yeast alcohol dehydrogenase were studied. 2. Results for the aldehyde-NADH reactions are consistent with a compulsory-order mechanism with the rate-limiting step being the dissociation of the product enzyme-NAD(+) complex. In contrast the results for the alcohol-NAD(+) reactions indicate that some dissociation of coenzyme from the active enzyme-NAD(+)-alcohol ternary complexes must occur and that the mechanism is not strictly compulsory-order. The rate-limiting step in ethanol oxidation is the dissociation of the product enzyme-NADH complex but with the other alcohols it is probably the catalytic interconversion of ternary complexes. 3. The rate constants describing the combination of NAD(+) and NADH with the enzyme and the dissociations of these coenzymes from binary complexes with the enzyme were measured.  相似文献   

17.
Dehydroquinate synthase, the enzyme which catalyzes the conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate (DAHP) to 5-dehydroquinate, has been purified from Bacillus subtilis in association with chorismate synthase and NADPH-dependent flavin reductase. The enzyme was only active when associated with chorismate synthase, whereas the flavin reductase could be separated from the complex with retention of dehydroquinate synthase activity. The enzyme requires NAD and either Co2+ or Mn2+ for maximal activity. The activity was completely inhibited by EDTA. The Km of the enzyme for DAHP, NAD, and Co2+ were estimated to be 1.3 X 10(-4), 5.5 X 10(-5), and 5.5 X 10(-5) M, respectively. Enzyme activity was completely inhibited by NADH and the inhibition was not reversed by the addition of NAD, NADPH and NADP were not inhibitory. The enzyme was unstable to heat and lost all activity at 55 degrees C. A protein fraction which did not adsorb to phosphocellulose was found to inhibit the enzyme.  相似文献   

18.
An original procedure for isolation and purification of carboxylesterase from the hemolymph of stage V larvae of one of Bombyx mori strains including precipitation with 10% polyethyleneglycol, ion-exchange chromatography on Sephadex G-200 and chromatography on DEAE-Sephadex A-50, has been developed. The specific activity of the enzyme after purification makes up to 1250 units per mg of protein with a 59% yield. Some physicochemical properties of the enzyme (Mr = 69 000, pI congruent to 4.9, temperature optimum = 40 degrees, pH optimum = 7.2 Km for alpha-naphthyl- and beta-naphthylacetate = 0.11 X 10(-3) and 0.52 X 10(-3) M, respectively) have been determined. Using immunodiffusion in agar gel, the antigenic identity of the enzymes isolated from the hemolymph of two silkworm species has been established.  相似文献   

19.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

20.
An angiotensin-converting enzyme was isolated from human heart using N[-1(S)-carboxy-5-aminopentyl]glycyl-glycine as an affinity adsorbent. The isolation procedure resulted in an enzyme purified 1650-fold. The enzyme specific activity was 38.0 u./mg protein, Mr = 150 kD. The pH optimum for the angiotensin-converting enzyme towards Hip-His-Leu lies at 7.8, Km = 1.2 mM. The enzyme was inhibited by the substrate (Ks' = 14 mM). The enzyme effectively catalyzed the hydrolysis of angiotensin I (Km = 10 microM; kcat = 250 s-1). NaCl, CaCl2 as well as Na2SO4 in the absence of Cl- activated the enzyme, whereas CH3COONa and NaNO3 did not influence the enzyme activity. It was found that the bradykinin-potentiating factor inhibited the cardiac angiotensin-converting enzyme with IC50 = 4.0 X 10(-8) M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号