首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A series of recombinant molecules were constructed which direct the expression of the easily assayed gene chloramphenicol acetyltransferase. We have used these recombinants to show that the 73/72-base-pair tandem repeat unit from the Moloney murine sarcoma virus long terminal repeat shares a number of properties with the prototypic enhancer element, the simian virus 40 72-base-pair repeat. Specifically, the Moloney murine sarcoma virus sequence significantly enhances the level of gene expression at both 5' and 3' locations and in either orientation relative to the test gene. It is able to enhance gene activity both from its own promoter and from a heterologous (simian virus 40) promoter. The 73/72-base-pair subunits of the Moloney murine sarcoma virus enhancer differ in sequence by four nucleotides and also in the strength of their enhancer function. The promoter distal A repeat is at least three times as active as the promoter proximal B repeat in enhancing chloramphenicol acetyltransferase expression. Results of these studies also show that the enhancer sequence alone is unable to induce gene activity but requires other promoter elements, including a proximal GC-rich sequence and the Goldberg-Hogness box.  相似文献   

2.
We identified and characterized elements which confer tissue specificity and cyclic AMP (cAMP) responsiveness to the human glycoprotein alpha-subunit gene. An enhancer containing an 18-base-pair repeat conferred cAMP responsiveness in a non-tissue-specific fashion. DNase I protection assays revealed DNA-binding factors that bound to this element in both placental and nonplacental cells. It also enhanced the alpha-subunit promoter in a tissue-specific manner but had a negligible effect on a heterologous promoter. A unique element found upstream of this enhancer had no independent activity but, in combination with the cAMP-responsive enhancer, distinctly increased the tissue-specific activity of both the alpha-subunit promoter and a heterologous promoter. A factor that bound to this upstream element was found in placental but not nonplacental cells. We conclude that this novel element acts, perhaps through a specific trans-acting factor, in concert with a cAMP-responsive enhancer to confer tissue specificity to the alpha-subunit gene.  相似文献   

3.
4.
We have investigated the sequence requirements for induction of the human c-fos gene by epidermal growth factor (EGF), 12-O-tetradecanoyl-13-acetate (TPA), and the calcium ionophore A23187 by transfecting c-fos promoter mutants into HeLa and A431 cells. Induction by both EGF and TPA in HeLa cells required the presence of the c-fos enhancer located at -317 to -298 relative to the mRNA cap site. A23187, however, did not induce expression of the transfected gene, even though it strongly induced expression of the endogenous gene, suggesting that it has different requirements for induction than do EGF and TPA. We have also investigated the role of promoter sequences downstream of the enhancer in general expression and induction of c-fos. A sequence between -97 and -76, which includes an 8-base-pair perfect direct repeat, was needed for efficient general expression but not for induction of the gene. A factor in nuclear extracts that bound specifically to this sequence was detected by a gel mobility shift assay. A 7-base-pair sequence, located between -63 and -57 relative to the mRNA cap site and previously shown to be important for general expression of mouse c-fos, was also important for general expression of the human gene. In addition, this element was important for inducibility by EGF and TPA, since induction was significantly reduced when internal deletion mutants that retained the enhancer but lacked the -63 to -57 sequence element were analyzed in transfecting assays.  相似文献   

5.
6.
A series of plasmids was constructed to study the effect of two enhancers, the simian virus 40 72-base-pair repeat and the Harvey sarcoma virus 73-base-pair repeat, on the mouse beta maj-globin promoter. These plasmids contain the mouse beta maj-globin promoter linked to the Escherichia coli galK gene, thus allowing galactokinase enzyme activity to be used as a measure of promoter function. In CV-1 (primate) cells, it was found that an enhancer is required for optimal promoter activity and that the simian virus 40 (primate) enhancer increases galactokinase fourfold more than the Harvey sarcoma virus (mouse) enhancer. In L (mouse) cells, however, the Harvey sarcoma virus enhancer is 1.3-fold stronger than the simian virus 40 enhancer. These data support the hypothesis that enhancer activity can be species specific. Furthermore, when both enhancers are present on the same plasmid, their effect is additive on the beta-globin promoter whether the plasmid is in CV-1 cells or L cells.  相似文献   

7.
8.
The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.  相似文献   

9.
10.
11.
12.
13.
14.
Several viral trans-activators and a tumor promoter were examined for the ability to activate human papillomavirus type 18 (HPV-18) gene expression. A plasmid containing the HPV-18 noncoding region placed upstream of the chloramphenicol acetyltransferase reporter gene was cotransfected with different herpes simplex virus type 1 (HSV-1) genes into several cell lines. Both HSV-1 TIF and ICP0 activated HPV-18 expression; however, activation by TIF was observed only in epithelial cells, while ICP0 stimulated expression in a wide variety of cells. The element activated by both TIF and ICP0 was mapped to a 229-base-pair fragment which also contains an HPV-18 epithelial cell-preferred enhancer. The inclusion of a papillomavirus E2 trans-activator with TIF and ICP0 further increased HPV-18 expression. In contrast, the HSV-1 ICP4 and ICP27 genes, as well as the human T-cell lymphotropic virus type I and human immunodeficiency virus type 1 tat genes, were found to have no effect on HPV-18 expression. In transient assays, the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also activated HPV-18 expression. The region of HPV-18 activated by TPA was localized to a sequence which is homologous to other TPA-responsive elements.  相似文献   

15.
Deletion analysis of the mouse alpha 1(III) collagen promoter.   总被引:3,自引:2,他引:1       下载免费PDF全文
A chimeric gene was constructed by fusing the DNA sequences containing the 5' flanking region of the mouse alpha 1(III) collagen gene to the coding sequence of the bacterial chloramphenicol acetyltransferase (CAT) gene. Transient transfection experiments indicated that the alpha 1(III) promoter is active in NIH 3T3 fibroblasts and BC3H1 smooth muscle cells. The activity of the alpha 1(III) collagen promoter-CAT plasmid is stimulated approximately ten fold by the presence of the SV40 enhancer element. Removing sequences upstream of -200 stimulates the activity of the chimeric gene eight fold. Further deletion analysis identified sequences located between -350 and -300 that were instrumental in repressing the activity of the promoter. This 50 bp region contains a direct repeat sequence that may be involved in the regulation of the mouse alpha 1(III) collagen gene. Truncating the alpha 1(III) promoter to -80 further stimulated expression. We propose that the positive regulatory elements of this gene appear to be located within the first 80 bp of the promoter, whereas elements located further upstream exert a negative effect on the expression of the gene. Regulation of the alpha 1(III) gene contrasts with that of the alpha 2(I) collagen gene, which appears to be regulated by several positive elements located in various regions of the promoter.  相似文献   

16.
We have previously shown that the Epstein-Barr virus (EBV) immediate-early gene product, BZLF1, can activate expression of the EBV BMLF1 immediate-early promoter in EBV-positive, but not EBV-negative, B cells, suggesting that the BZLF1 effect may be mediated through another EBV gene product (S. Kenney, J. Kamine, E. Holley-Guthrie, J.-C. Lin, E.-C. Mar, and J. S. Pagano, J. Virol. 63:1729-1736, 1989). Here, we show that the EBV BRLF1 immediate-early gene product transactivates the BMLF1 promoter in either EBV-positive or EBV-negative B cells. Deletional analysis revealed that both the BZLF1-responsive region and the BRLF1-responsive region of the BMLF1 promoter are contained within the same 140-base-pair FokI-PvuII fragment located 300 base pairs upstream of the mRNA start site. This FokI-PvuII fragment functions as an enhancer element in the presence of the BRLF1 transactivator and contains the sequence CCGTGGAGA ATGTC, which is strikingly similar to the BRLF1-responsive region of the EBV DR/DL enhancer (A. Chevallier-Greco, H. Gruffat, E. Manet, A. Calender, and A. Sergeant, J. Virol. 63:615-623, 1989). The effect of BZLF1 on the BMLF1 promoter is likely to be indirect and mediated through the BRLF1 transactivator.  相似文献   

17.
A negative element involved in vimentin gene expression.   总被引:13,自引:8,他引:5       下载免费PDF全文
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号