首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
H. Kasemir  G. Prelim 《Planta》1976,132(3):291-295
Summary The rate of chlorophyllide esterification in mustard cotyledons can be increased by a pretreatment with 5 min red light applied 24 h prior to the protochlorophyll(ide)chlorophyll(ide) photoconversion at 60 h after sowing. Simultaneously the red light pulse pretreatment leads to a decrease of the total amount of chlorophyll(ide) a in darkness. It has been proven that phytochrome (Pfr) is the photoeffector for both. Since the amounts of esterified chlorophyllide are determined by the ratio [chlorophyll a]/[chlorophyllide a+chlorophyll a] it is assumed that Pfr increases the rate of esterification indirectly via stimulating the decrease of chlorophyll(ide) a. The regulation of chlorophyll synthesis by Pfr does not seem to involve a control of esterification. The duration of the chlorophyllide esterification differs from the duration of the Shibata shift although both are greatly shortened by the red light pulse pretreatment. The effect of 5 min red light on the duration of the esterification is fully reversible by 5 min far-red light while the reversibility with respect to the Shibata shift is lost within 2 min [Jabben, M. and H. Mohr, Photochem. Photobiol. 22, 55–58 (1975)]. We conclude that the control of the chlorophyllide esterification and the control of the Shibata shift cannot be traced back to the same initial action of Pfr.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Chl(ide) sum of Chl and Chlide - PChl protochlorophyll - PChlide protochlorophyllide - PChl(ide) sum of PChl and PChlide - Pfr far-red absorbing form of the phytochrome system  相似文献   

2.
H. Gehring  H. Kasemir  H. Mohr 《Planta》1977,133(3):295-302
Within the temporal pattern of primary differentiation the capacity of chlorophyll — a biosynthesis in the cotyledons ofSinapis alba L. seedlings is controlled by phytochrome (in continuous light) or by releasing the circadian rhythm either with lightdark cycles or by a lightdark transition. The sensor pigment for this process is phytochrome. It is very probable that in continuous light as well as under conditions under which the circadian rhythm plays the major part, the capacity of chlorophyll a biosynthesis is limited by the capacity of the biosynthetic step which produces 5-aminolaevulinate.Abbreviations Chl chlorophyll(ide) a - ALA 5-aminolaevulinate - LA laevulinate - PChl protochlorophyll(ide) - ALAD aminolaevulinate dehydratase (EC4.2.1.24) - [Pfr]/[P10c], photoequilibrium of the phytochrome system at the wavelength - whereby [P10c] [Pr]+[Pfr]. Pfr is the physiologically active, far-red absorbing form of the phytochrome system  相似文献   

3.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

4.
By spectral methods, the final stages of chlorophyll formation from protochlorophyll (ide) were studied in heterotrophic cells of Chlorella vulgaris B-15 mutant, where chlorophyll dark biosynthesis is inhibited. It was shown that during the dark cultivation, in the mutant cells, in addition to the well-known protochlorophyll (ide) forms Pchlide 655/650, Pchl(ide) 640/635, Pchl(ide) 633/627, a long-wavelength protochlorophyll form is accumulated with fluorescence maximum at 682 nm and absorption maximum at 672 nm (Pchl 682/672). According to the spectra measured in vivo and in vitro, illumination of dark grown cells leads to the photoconversion of Pchl 682/672 into the stable long wavelength chlorophyll native form Chl 715/696. This reaction was accompanied by well-known photoreactions of shorter-wavelength Pchl (ide) forms: Pchlide 655/650Chlide 695/684 and Pchl (ide) 640/635Chl (ide) 680/670. These three photoreactions were observed at room temperature as well as at low temperature (203–233 K).Abbreviations Chl chlorophyll - Chlide chlorophyllide - Pchlide protochlorophyllide - Pchl protochlorophyll - PS I RC Photosystem I reaction centres. Abbreviations for native pigment forms: the first number after the pigment symbol corresponds to maximum position of low-temperature (77 K) fluorescence band (nm), second number to maximum position of long-wavelength absorption band  相似文献   

5.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

6.
Fluence rate-response curves were determined for the inhibition of hypocotyl growth in 54 h old dark-grownSinapis alba L. seedlings by continuous or hourly 5 min red light irradiation (24 h). In both cases a fluence rate-dependence was observed. More than 90% of the continuous light effect could be substituted for by hourly light pulses if the total fluence of the two different light regimes was the same. Measurements of the far red absorbing form of phytochrome ([P fr]) and [P fr]/[P tot] (total phytochrome) showed a strong fluence rate-dependence under continuous and pulsed light which partially paralleled the fluence rate-response curves for the inhibition of the hypocotyl growth.Abbreviations R red - HIR high irradiance response - P rfr phytochrome in its red, far-red absorbing form - [P tot]=[P r]+[P fr] =k 1/(k 1+k 2): photoequilibrium of phytochrome at wavelength , wherebyk 1,2 rate constants ofP rP fr,P frP r photoconversion - [P fr]/[P tot]  相似文献   

7.
K. Malhotra  H. Oelze-Karow  H. Mohr 《Planta》1982,154(4):361-370
We have performed a comprehensive study on the mechanism of regulation of carotenogenesis by light in the shoot of Sorghum vulgare. Our work shows that carotenoid accumulation is simultaneously controlled by phytochrome (Pfr) and by the availability of chlorophyll. Throughout plastidogenesis light dependent chlorophyll and carotenoid accumulation are interdependent processes: Accumulation of chlorophyll in natural light requires the presence of carotenoids; likewise, accumulation of considerable amount of carotenoids depends on the availability of chlorophyll. However, in both cases the efficiency of the biosynthetic pathway, the potential biosynthetic rates (capacities) are determined by phytochrome. A push and pull model of carotenogenesis advanced previously (Frosch and Mohr 1980, Planta 148, 279) to explain carotenogenesis in the mustard (Sinapis alba) seedling also applies to the monocotyledonous milo (Sorghum vulgare) seedling. Therefore, we suggest that the model applies to carotenogenesis in higher plants in general.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR High irradiance response (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - P red absorbing physiologically inactive form of phytochrome - Ptot total phytochrome - i.e. [Pr]+[Pfr] =[Pfr]+[Ptot], wavelength dependent photoequilibrium of the phytochrome system - RL red light - FR far-red light  相似文献   

8.
M. Masoner  G. Unser  H. Mohr 《Planta》1972,105(3):267-272
Summary Data are presented which indicate that the rate of synthesis and the pool size of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling are controlled by the active form of phytochrome (Pfr). Inductionreversion experiments show that formation of chlorophyll a through photoconversion of the protochlorophyll(ide) by repeated red pulses (5 min each) has no effect on synthesis of carotenoids and galactolipids. Since the protochlorophyll(ide)-converting activity of the standard far-red light used in this laboratory is very low, chlorophyll-a accumulation is very slow under continuous standard far-red light. It is concluded that photosynthesis (or photosynthetic phosphorylation) does not participate in the high irradiance reaction of photomorphogenesis.  相似文献   

9.
Barley seedlings (Hordeum vulgare L. cv. Boone) were grown at 20°C with a 16h/8h light/dark cycle of either high (H) intensity (550 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) or low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod and a 3 cm apical segment removed for analysis. H control plants had greater chlorophyll (Chl) per leaf area and higher Chl a/b ratios than L controls. Analysis of Chl-protein complexes revealed that H and L plants had the same percentage of total Chl (62–65%) associated with Photosystem II (PS II), but that the organization of Chl within PS II was different. H plants contained lower levels of light-harvesting complex (LHC-II) and higher levels of the PS II complex CPa compared with L plants. Leaf Chl content and Chl organization within PS II were sensitive to changes in light intensity. In H L plants, leaf Chl content decreased, Chl a/b ratio decreased, and a redistribution of Chl from CPa to LHC-II occurred during acclimation to low light. Acclimation of L H plants to high light involved an increase in leaf Chl content, an increase in Chl a/b ratio, and a decrease in LHC-II. In contrast, the level of photosystem I related Chl-protein complexes (CP1 + CP1a) was similar in all light treatments. The light acclimation process occurred slowly over a period of 6 to 8 d in H L and L H plants.Abbreviations DMF dimethylformamide - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L control plants grown under low light intensity - L H plants transferred from low to high light intensity Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11989 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

10.
Coaction of three factors controlling chlorophyll and anthocyanin synthesis   总被引:1,自引:0,他引:1  
Helga Kasemir  Hans Mohr 《Planta》1982,156(3):282-288
In a three-factor analysis the rate of chlorophyll a (Chl) accumulation in excised mustard cotyledons was studied as a function of kinetin, light (operating through phytochrome, P fr) and an excision factor. It was found that the three factors operate additively provided that the P fr level is high enough. When the P fr level is below approximately 1 per cent (<0.01) the effectiveness of the excision factor decreases while the effect of kinetin remains additive. The observed additivity is explained by a model where the three factors operate independently through a common intermediate (presumably 5-aminolevulinate) in the biosynthetic chain leading to Chl. With regard to the coaction of the excision factor and phytochrome it is concluded that the production of the excision factor requires the operation of phytochrome (even though saturated at a low P fr level) while the action of the excision factor is independent of phytochrome. This conclusion was confirmed by experiments in which the rate of light-mediated anthocyanin synthesis was measured in excised mustard cotyledons. The effect of excision in the case of anthocyanin formation differs kinetically from the effect of excision on Chl formation.Abbreviations Chl chlorophyll(ide) a - P fr far-red absorbing form of phytochrome - P fr/P tot ratio at photoequilibrium - RL red light - FR far-red light - GL green light - RG9 light long wavelength far-red light - WL white light  相似文献   

11.
J.-M. Michel 《Planta》1978,141(1):45-50
Protochlorophyll(ide) disappearance and chlorophyll(ide) accumulation, in dark-grown Euglena, promoted by series of actinic light flashes, have been followed by in vivo fluorescence measurements. The data show that chlorophyll(ide) accumulation is biphasic, i.e., there is an initial rapid phase followed by a slower linear phase. The linear phase is highly dependent on flash frequency and on cell respiration whereas the initial phase is much less affected by these factors. It is concluded that dark-grown cells contain a limited pool of phototransformable protochlorophyll(ide); once this pool is exhausted, its reformation and/or the synthesis of some unknown metabolite necessary for the photoreduction appears to be dependent on respiration.  相似文献   

12.
R. Oelmüller  C. Schuster 《Planta》1987,172(1):60-70
The amount of in-vitro translatable mRNA of the light-harvesting chlorophyll a/b-binding protein (LHCP) of photosystem II strongly increases in darkness (D) after a 5-min red-light pulse while continuous illumination of mustard seedlings with far-red (FR), red or white light leads only to a slight increase in the amount of translatable LHCP-mRNA. No increase can be observed after a long-wavelength FR (RG9-light) pulse. However, a FR pretreatment prior to the RG9-light pulse strongly increase LHCP-mRNA accumulation in subsequent D. This is not observed in the case of the mRNA for the small subunit of ribulose-1.5-bisphosphate carboxylase. The increase of LHCP-mRNA in D after a FR pretreatment can be inhibited by a reillumination of the seedlings with FR. The inhibition of LHCP-mRNA accumulation during continuous illumination with FR and the strong increase in D following a FR illumination was found to be independent of chlorophyll biosynthesis since no correlation between chlorophyll biosynthesis and translatable LHCP-mRNA levels could be detected. Even strong changes in the amount of intermediates of chlorophyll biosynthesis caused by application of levulinic acid or 5-aminolevulinic acid did not affect LHCP-mRNA levels. Therefore, we conclude that the appearance of LHCP-mRNA is inhibited during continuous illumination, even though illumination leads to a storage of a light singal which promotes accumulation of translatable LHCP-mRNA in D.Abbreviations c continuous - Chl chlorophyll - D darkness - FR far-red light (3.5 W·m-2) - LHCP light-harvesting chlorophyll a/b-binding protein of photosystem II - NF Norfluration - PChl protochlorophyll(ide) - Pfr far-red absorbing form of phytochrome - Ptot total phytochrome - R red light (6.8 W·m-2) - RG9-light long-wavelength FR (10 W·m-2) - SSU small subunit of ribulose-1.5-bisphosphate carboxylase - WL white light - () Pfr/Ptot=wavelength-dependent photoequilibrium of the phytochrome system  相似文献   

13.
H. Kasemir  P. Huber  H. Mohr 《Planta》1976,132(2):157-160
Summary Significant accumulation of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling takes place from 24 h after sowing onwards (25° C). The rate of accumulation in darkness is greatly increased by a pretreatment with red or far-red light. The strong effect of continuous red light, given from the time of sowing, remains fully reversible by a 756 nm-light pulse up to about 18 h after sowing. On the other hand, the effect of continuous far-red light which can be detected at 15 h after sowing is not influenced by a subsequent application of 756 nm-light pulses. An interpretation of the data requires the concept that continuous red light and continuous far-red light act from different sites. This conclusion is based on a comparison of the present data with the earlier published data on phytochromemediated anthocyanin synthesis in the mustard seedling cotyledons.Abbreviations PChl protochlorophyll(ide) - Chl chlorophyll(ide) - Ptr far-red absorbing form of the phytochrome system (physiologically active) - Pr red absorbing form of the phytochrome system - [Ptot] [Pr]+[Pfr] Supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 46).  相似文献   

14.
In an attempt to solve the controversy about the evaluation of the molar absorption coefficient of PChl(ide), this coefficient is estimated in this work by using an original experimental approach. The calculated molar absorption coefficient of PChl(ide) is 30.4.103 1 mole–1 cm–1 at 626 nm in acetone 80%; it is close to that derived from the specific absorption coefficient of Koski and Smith when assuming that the pigment extracted by these authors was the esterified pigment: PChl. Sets of equations for the quantification of Chl(ide) a, Chl b and PChl(ide) in 80% acetone extracts are derived.Abbreviations PChl(ide) protochlorophyll(ide) - Chl(ide) chlorophyll(ide)  相似文献   

15.
Preliminary dark incubation of etiolated pea and maize plants at 38 °C allowed to observe a new dark reaction of Chl biosynthesis occuring after photoconversion of protochlorophyllide Pchld 655/650 into chlorophyllide Chld 684/676. This reaction was accompanied by chlorophyllide esterification and by the bathochromic shift of pigment spectra: Chld 684/676 Chl 688/680. After completion of the reaction, a rapid (20–30 s at 26 °C) quenching of Chl 688/680 low-temperature fluorescence was observed. The reaction Chld 684/676 Chl 688/680 was inhibited under anaerobic conditions as well as in the presence of KCN; the reaction accompanied by Chl fluorescence quenching was inhibited in the leaves of pea mutants with impaired function of Photosystem II reaction centers. The spectra position of newly formed Chl, effects of Chl fluorescence quenching allowed to assume that the new dark reaction is responsible for biosynthesis of P–680, the key pigment of Photosystem II reaction centres.  相似文献   

16.
J. Feierabend 《Planta》1977,135(1):83-88
The leaves of young rye plants (Secale cereale L.) grown at 32° were deficient in chlorophyll and in chloroplastic rRNA as compared to those grown at 22°, which developed normally. Both chlorophyll accumulation and the formation of plastidic rRNA were largely restored at 32° when the plants were transfered several times for 1 h per day to 22°. In the chlorotic 32°-grown rye leaves the in vivo activity of -aminolevulinate synthetase was very low. Aminolevulinate dehydratase however, exhibited high activity in extracts from 32°-grown leaves and was localized in the plastid fraction isolated from the chlorotic leaf tissue. After application of -aminolevulinic acid to chlorotic parts of leaves growing at 32°, protochlorophyll(ide) was formed and accumulated in the dark. In the light, the protochlorophyll(ide) was photooxidized at 32°. The results suggest a cytoplasmic site of synthesis for the series of enzymes converting -aminolevulinate to protochlorophyll(ide). It is concluded that an inhibition of -aminolevulinate synthetase and the photooxidation of protochlorophyll(ide) or chlorophyll are responsible for the chlorosis of the leaves at 32°.Abbreviations ALA -aminolevulinic acid - ALAD -aminolevulinate dehydratase - ALAS -aminolevulinate synthetase  相似文献   

17.
M. Jouy  C. Sironval 《Planta》1979,147(2):127-133
Chlorophyll(ide) fluorescence emission decreases at room temperature during completion of protochlorophyll(ide) reduction. The process responsible for this quenching is parallel to the P688-676 P695-682 transition. It proceeds equally well in darkness and in the light. It consists in a decrease of the fluorescence yield of chlorophyll(ide) in P695-682. Apparently, room temperature P695-682 fluorescence is regulated by a conjunction of factors such as energy transfers and photobiochemical activities.Abbreviations NADP nicotinamide-adenine dinucleotide phosphate - CPI chlorophyll-protein-complex I - CPII chlorophyll-protein-complex II Aspirant du Fond National de la Recherche Scientifique, Belgium  相似文献   

18.
Summary Phytochrome photoconversions PrPfr and PfrPr can be measured by differential spectrophotometry in dry seeds (6% water content) of Pinus nigra Arn. A red light irradiation given before imbibition induces germination when the seeds are subsequently wetted and kept in darkness.In continuous darkness the phytochrome content shows a drastic increase at the beginning of moistening.The detectable pigment is entirely in the Pr form. The normal PfrPr dark reversion is observed. Pfr destruction does not take place.  相似文献   

19.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   

20.
The decreasing absorbances in vivo of protochlorophyll(ide) at 635 and 650 nm bear the same relationships to one another during photoconversion to chlorophyll(ide) a in the leaves of dark-grown barley seedlings, regardless of whether the actinic light is absorbed primarily at 630, 640 or 671 nm. Accordingly, the absorption bands at 635–637 and 650 nm of photoconvertible protochlorophyll(ide) are attributed to a single species of membrane-bound protochlorophyll(ide) molecule or, alternatively, to two species which are in dynamic equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号