首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bochmann H  Gehrisch S  Jaross W 《Genomics》1999,56(2):203-207
The growth factor bound protein GRB2, a 25-kDa cytosolic protein, plays a key role in two separate pathways of the insulin signal transduction system leading from the insulin receptor to the Ras proteins and thus affecting mitogenic signaling. GRB2 regulates Ras activation through association with the guanine nucleotide exchange factor Sos. The GRB2/Sos complex can connect with insulin receptor substrate 1 (IRS-1), which is one of the primary targets of the insulin and insulin-like growth factor receptors. In a second pathway, independent of IRS-1, GRB2 links the insulin receptor to Ras signaling through another adapter protein, called Shc. In protooncogenic and other noninsulin signaling systems, GRB2 appears to link receptor tyrosine kinases to Ras in similar pathways as well. This study presents the exon-intron organization of the human GRB2 gene. After primers were placed across the known mRNA sequence, Long PCR products spanning introns and their adjacent splice sites were amplified and adequately sequenced to establish the splice sites and flanking regions. The gene was found to consist of five exons (ranging from 78 to 186 bp) and of four introns (from approximately 1 to approximately 7 kb). Intron primers for the respective exons were generated using the newly found flanking sequences. All exons were successfully amplified and sequenced, and the data obtained from Long PCR sequencing were confirmed.  相似文献   

2.
GRB2, a small protein comprising one SH2 domain and two SH3 domains, represents the human homologue of the Caenorhabditis elegans protein, sem-5. Both GRB2 and sem-5 have been implicated in a highly conserved mechanism that regulates p21ras signalling by receptor tyrosine kinases. In this report we show that in response to insulin, GRB2 forms a stable complex with two tyrosine-phosphorylated proteins. One protein is the major insulin receptor substrate IRS-1 and the second is the SH2 domain-containing oncogenic protein, Shc. The interactions between GRB2 and these two proteins require ligand activation of the insulin receptor and are mediated by the binding of the SH2 domain of GRB2 to phosphotyrosines on both IRS-1 and Shc. Although GRB2 associates with IRS-1 and Shc, it is not tyrosine-phosphorylated after insulin stimulation, implying that GRB2 is not a substrate for the insulin receptor. Furthermore, we have identified a short sequence motif (YV/IN) present in IRS-1, EGFR and Shc, which specifically binds the SH2 domain of GRB2 with high affinity. Interestingly, both GRB2 and phosphatidylinositol-3 (PI-3) kinase can simultaneously bind distinct tyrosine phosphorylated regions on the same IRS-1 molecule, suggesting a mechanism whereby IRS-1 could provide the core for a large signalling complex. We propose a model whereby insulin stimulation leads to formation of multiple protein--protein interactions between GRB2 and the two targets IRS-1 and Shc. These interactions may play a crucial role in activation of p21ras and the control of downstream effector molecules.  相似文献   

3.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

4.
We have analyzed in Chinese hamster ovary cells the upstream mediators by which the G protein-coupled receptor, gastrin/CCKB, activates the extracellular-regulated kinases (ERKs) and p85/p110-phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Overexpression of an inhibitory mutant of Shc completely blocked gastrin-stimulated Shc.Grb2 complex formation but partially inhibited ERK-1 activation by this peptide. Expression of Csk, which inactivates Src-family kinases, totally inhibited gastrin-induced Src-like activity detected in anti-Src and anti-Shc precipitates but diminished by 50% Shc phosphorylation and ERK-1 activation. We observed a rapid tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and an increase in Src-like kinase activity in anti-IRS-1 immunoprecipitates from gastrin-stimulated cells, suggesting that IRS-1 may be a direct substrate of Src. This hypothesis was supported by the inhibition of gastrin-induced Src. IRS-1 complex formation and IRS-1 phosphorylation in Csk-transfected cells. In addition, the increase in PI 3-kinase activity measured in anti-p85 or anti-IRS-1 precipitates following gastrin stimulation was abolished by Csk. Our results demonstrate the existence of two mechanisms in gastrin-mediated ERKs activation. One requires Shc phosphorylation by Src-family kinases, and the other one is independent of these two proteins. They also indicate that tyrosine phosphorylation of IRS-1 by Src-family kinases could lead to the recruitment and the activation of the p85/p110-PI 3-kinase in response to gastrin.  相似文献   

5.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

6.
The ability of insulin to stimulate protein synthesis and cellular growth is mediated through the insulin receptor (IR), which phosphorylates Tyr residues in the insulin receptor substrate-signaling proteins (IRS-1 and IRS-2), Gab-1, and Shc. These phosphorylated substrates directly bind and activate enzymes such as phosphatidylinositol 3'-kinase (PI3K) and the guanine nucleotide exchange factor for p21Ras (GRB-2/SOS), which are in turn required for insulin-stimulated protein synthesis, cell cycle progression, and prevention of apoptosis. We have now shown that one or more members of the atypical protein kinase C group, as exemplified by the zeta isoform (PKC zeta), are downstream of IRS-1 and P13K and mediate the effect of insulin on general protein synthesis. Ectopic expression of constitutively activated PKC zeta eliminates the requirement of IRS-1 for general protein synthesis but not for insulin-stimulated activation of 70-kDa S6 kinase (p70S6K), synthesis of growth-regulated proteins (e.g., c-Myc), or mitogenesis. The fact that PKC zeta stimulates general protein synthesis but not activation of p70S6K indicates that PKC zeta activation does not involve the proto-oncogene Akt, which is also activated by PI3K. Yet insulin is still required for the stimulation of general protein synthesis in the presence of constitutively active PKC zeta and in the absence of IRS-1, suggesting a requirement for the convergence of the IRS-1/PI3K/PKC zeta pathway with one or more additional pathways emanating from the IR, e.g., Shc/SOS/p21Ras/mitogen-activated protein kinase. Thus, PI3K appears to represent a bifurcation in the insulin signaling pathway, one branch leading through PKC zeta to general protein synthesis and one, through Akt and the target of rapamycin (mTOR), to growth-regulated protein synthesis and cell cycle progression.  相似文献   

7.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

8.
The paradigm for activation of Ras and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase by extracellular stimuli via tyrosine kinases, Shc, Grb2, and Sos does not encompass an obvious role for phosphoinositide (PI) 3-kinase, and yet inhibitors of this lipid kinase family have been shown to block the ERK/MAP kinase signalling pathway under certain circumstances. Here we show that in COS cells activation of both endogenous ERK2 and Ras by low, but not high, concentrations of epidermal growth factor (EGF) is suppressed by PI 3-kinase inhibitors; since Ras activation is less susceptible than ERK2 activation, PI 3-kinase-sensitive events may occur both upstream of Ras and between Ras and ERK2. However, strong elevation of PI 3-kinase lipid product levels by expression of membrane-targeted p110alpha is by itself never sufficient to activate Ras or ERK2. PI 3-kinase inhibition does not affect EGF-induced receptor autophosphorylation or adapter protein phosphorylation or complex formation. The concentrations of EGF for which PI 3-kinase inhibitors block Ras activation induce formation of Shc-Grb2 complexes but not detectable EGF receptor phosphorylation and do not activate PI 3-kinase. The activation of Ras by low, but mitogenic, concentrations of EGF is therefore dependent on basal, rather than stimulated, PI 3-kinase activity; the inhibitory effects of LY294002 and wortmannin are due to their ability to reduce the activity of PI 3-kinase to below the level in a quiescent cell and reflect a permissive rather than an upstream regulatory role for PI 3-kinase in Ras activation in this system.  相似文献   

9.
10.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

11.
Shc and CEACAM1 interact to regulate the mitogenic action of insulin.   总被引:4,自引:0,他引:4  
CEACAM1, a tumor suppressor (previously known as pp120), is a plasma membrane protein that undergoes phosphorylation on Tyr(488) in its cytoplasmic tail by the insulin receptor tyrosine kinase. Co-expression of CEACAM1 with insulin receptors decreased cell growth in response to insulin. Co-immunoprecipitation experiments in intact NIH 3T3 cells and glutathione S-transferase pull-down assays revealed that phosphorylated Tyr(488) in CEACAM1 binds to the SH2 domain of Shc, another substrate of the insulin receptor. Overexpressing Shc SH2 domain relieved endogenous Shc from binding to CEACAM1 and restored MAP kinase activity, growth of cells in response to insulin, and their colonization in soft agar. Thus, by binding to Shc, CEACAM1 sequesters this major coupler of Grb2 to the insulin receptor and down-regulates the Ras/MAP kinase mitogenesis pathway. Additionally, CEACAM1 binding to Shc enhances its ability to compete with IRS-1 for phosphorylation by the insulin receptor. This leads to a decrease in IRS-1 binding to phosphoinositide 3'-kinase and to the down-regulation of the phosphoinositide 3'-kinase/Akt pathway that mediates cell proliferation and survival. Thus, binding to Shc appears to constitute a major mechanism for the down-regulatory effect of CEACAM1 on cell proliferation.  相似文献   

12.
Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.  相似文献   

13.
The effect of insulin on glucose transport, glucose transporter 4 (Glut4) translocation, and intracellular signaling were measured in fat cells from lean and obese Zucker rats of different ages. Insulin-stimulated glucose transport was markedly reduced in adipocytes from old and obese animals. The protein content of Glut4 and insulin receptor substrates (IRS) 1 and 2 were also reduced while other proteins, including the p85 subunit of PI3-kinase, Shc and the MAP kinases (ERK1 and 2) were essentially unchanged. There was a marked impairment in the insulin stimulated tyrosine phosphorylation of IRS-1 and 2 as well as activation of PI3-kinase and PKB in cells from old and obese animals. Furthermore, insulin-stimulated translocation of both Glut4 and PKB to the plasma membrane was virtually abolished. The phosphotyrosine phosphatase inhibitor, vanadate, increased the insulin- stimulated upstream signaling including PI3-kinase and PKB activities as well as rate of glucose transport. Thus, the insulin resistance in cells from old and obese Zucker rats can be accounted for by an impaired translocation process, due to signaling defects leading to a reduced activation of PI3-kinase and PKB, as well as an attenuated Glut4 protein content.  相似文献   

14.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

15.
Targeted disruption of both alleles of mouse sos1, which encodes a Ras-specific exchange factor, conferred mid-gestational embryonic lethality that was secondary to impaired placental development and was associated with very low placental ERK activity. The trophoblastic layers of sos1(-/-) embryos were poorly developed, correlating with high sos1 expression in wild-type trophoblasts. A sos1(-/-) cell line, which expressed readily detectable levels of the closely related Sos2 protein, formed complexes between Sos2, epidermal growth factor receptor (EGFR) and Shc efficiently, gave normal Ras.GTP and ERK responses when treated with EGF for < or =10 min and was transformed readily by activated Ras. However, the sos1(-/-) cells were resistant to transformation by v-Src or by overexpressed EGFR and continuous EGF treatment, unlike sos1(+/-) or wild-type cells. This correlated with Sos2 binding less efficiently than Sos1 to EGFR and Shc in cells treated with EGF for > or =90 min or to v-Src and Shc in v-Src-expressing cells, and with less ERK activity. We conclude that Sos1 participates in both short- and long-term signaling, while Sos2-dependent signals are predominantly short-term.  相似文献   

16.
The Drosophila insulin receptor (DIR) contains a 368-amino-acid COOH-terminal extension that contains several tyrosine phosphorylation sites in YXXM motifs. This extension is absent from the human insulin receptor but resembles a region in insulin receptor substrate (IRS) proteins which binds to the phosphatidylinositol (PI) 3-kinase and mediates mitogenesis. The function of a chimeric DIR containing the human insulin receptor binding domain (hDIR) was investigated in 32D cells, which contain few insulin receptors and no IRS proteins. Insulin stimulated tyrosine autophosphorylation of the human insulin receptor and hDIR, and both receptors mediated tyrosine phosphorylation of Shc and activated mitogen-activated protein kinase. IRS-1 was required by the human insulin receptor to activate PI 3-kinase and p70s6k, whereas hDIR associated with PI 3-kinase and activated p70s6k without IRS-1. However, both receptors required IRS-1 to mediate insulin-stimulated mitogenesis. These data demonstrate that the DIR possesses additional signaling capabilities compared with its mammalian counterpart but still requires IRS-1 for the complete insulin response in mammalian cells.  相似文献   

17.
In Drosophila embryos, the Torso receptor tyrosine kinase (RTK) activates the small G protein Ras (D-Ras1) and the protein kinase Raf (D-Raf) to activate ERK to direct differentiation of terminal structures . However, genetic studies have demonstrated that Torso, and by extension other RTKs, can activate Raf and ERK independently of Ras . In mammalian cells, the small G protein Rap1 has been proposed to couple RTKs to ERKs. However, the ability of Rap1 to activate ERKs remains controversial, in part because direct genetic evidence supporting this hypothesis is lacking. Here, we present biochemical and genetic evidence that D-Rap1, the Drosophila homolog of Rap1, can activate D-Raf and ERK. We show that D-Rap1 binds D-Raf and activates ERKs in a GTP- and D-Raf-dependent manner. Targeted disruption of D-Rap1 expression decreased both Torso-dependent ERK activation and the ERK-dependent expression of the zygotic genes tailless and huckebein to levels similar to those achieved in D-Ras1 null embryos. Furthermore, combined deficiencies of D-Ras1 and D-Rap1 completely abolished expression of these genes, mimicking the phenotype observed in embryos lacking D-Raf. These studies provide the first direct genetic evidence of Rap1-mediated activation of the MAP kinase cascade in eukaryotic organisms.  相似文献   

18.
We have previously reported that pertussis toxin (PTX)-sensitive GTP binding protein (G-protein) and phosphatidylinositol 3-kinase (PI 3-K) are involved in adipocyte differentiation of 3T3-L1 cells induced by insulin/dexamethasone/methylisobutyl xanthine. The aim of this study was to examine the effect of PTX on the tyrosine kinase cascade stimulated by insulin acting through insulin-like growth factor-I (IGF-I) receptors in undifferentiated 3T3-L1 cells. A high level of mitogen-activated protein kinase (MAPK) activation was sustained for up to 4 h after insulin treatment, and mobility shifted and tyrosine phosphorylated MAPK was also detected. MAPK kinase activity measured by the incorporation of 32P into kinase-negative recombinant MAPK was enhanced by insulin treatment. We previously discovered that insulin activates Ras and that this is mediated by wortmannin-sensitive PI 3-K. Tyrosine-phosphorylation of IRS-1 and Shc also occurred in response to insulin. Subsequently, we investigated the effects of PTX on the activation of these proteins by insulin. Interestingly, treating 3T3-L1 cells with PTX attenuates the activation by insulin of both the Ras-MAPK cascade and PI 3-K. In contrast, neither tyrosine-phosphorylation of IRS-1 and Shc nor the interaction between IRS-1 and PI 3-K is sensitive to PTX. However, activation of the Ras-MAPK cascade and tyrosine-phosphorylation of Shc by epidermal growth factor are insensitive to PTX. These results indicate that there is another pathway which regulates PI 3-K and Ras-MAPK, independent of the pathway mediated by IGF-I receptor kinase. These findings suggest that in 3T3-L1 fibroblasts, PTX-sensitive G-proteins cross-talk with the Ras-MAPK pathway via PI 3-K by insulin acting via IGF-I receptors.  相似文献   

19.
20.
Morphine induces desensitization of insulin receptor signaling   总被引:4,自引:0,他引:4       下载免费PDF全文
Morphine analgesia is mediated principally by the micro -opioid receptor (MOR). Since morphine and other opiates have been shown to influence glucose homeostasis, we investigated the hypothesis of direct cross talk between the MOR and the insulin receptor (IR) signaling cascades. We show that prolonged morphine exposure of cell lines expressing endogenous or transfected MOR, IR, and the insulin substrate 1 (IRS-1) protein specifically desensitizes IR signaling to Akt and ERK cascades. Morphine caused serine phosphorylation of the IR and impaired the formation of the signaling complex among the IR, Shc, and Grb2. Morphine also resulted in IRS-1 phosphorylation at serine 612 and reduced tyrosine phosphorylation at the YMXM p85-binding motifs, weakening the association of the IRS-1/p85 phosphatidylinositol 3-kinase complex. However, the IRS-1/Grb2 complex was unaffected by chronic morphine treatment. These results suggest that morphine attenuates IR signaling to Akt by disrupting the IRS-1-p85 interaction but inhibits signaling to ERK by disruption of the complex among the IR, Shc, and Grb2. Finally, we show that systemic morphine induced IRS-1 phosphorylation at Ser612 in the hypothalamus and hippocampus of wild type, but not MOR knockout, mice. Our results demonstrate that opiates can inhibit insulin signaling through direct cross talk between the downstream signaling pathways of the MOR and the IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号