首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
SOD2 functions downstream of Sch9 to extend longevity in yeast   总被引:13,自引:0,他引:13  
Signal transduction pathways inactivated during periods of starvation are implicated in the regulation of longevity in organisms ranging from yeast to mammals, but the mechanisms responsible for life-span extension are poorly understood. Chronological life-span extension in S. cerevisiae cyr1 and sch9 mutants is mediated by the stress-resistance proteins Msn2/Msn4 and Rim15. Here we show that mitochondrial superoxide dismutase (Sod2) is required for survival extension in yeast. Deletion of SOD2 abolishes life-span extension in sch9Delta mutants and decreases survival in cyr1:mTn mutants. The overexpression of Sods--mitochondrial Sod2 and cytosolic CuZnSod (Sod1)--delays the age-dependent reversible inactivation of mitochondrial aconitase, a superoxide-sensitive enzyme, and extends survival by 30%. Deletion of the RAS2 gene, which functions upstream of CYR1, also doubles the mean life span by a mechanism that requires Msn2/4 and Sod2. These findings link mutations that extend chronological life span in S. cerevisiae to superoxide dismutases and suggest that the induction of other stress-resistance genes regulated by Msn2/4 and Rim15 is required for maximum longevity extension.  相似文献   

2.
Sir2 blocks extreme life-span extension   总被引:18,自引:0,他引:18  
Sir2 is a conserved deacetylase that modulates life span in yeast, worms, and flies and stress response in mammals. In yeast, Sir2 is required for maintaining replicative life span, and increasing Sir2 dosage can delay replicative aging. We address the role of Sir2 in regulating chronological life span in yeast. Lack of Sir2 along with calorie restriction and/or mutations in the yeast AKT homolog, Sch9, or Ras pathways causes a dramatic chronological life-span extension. Inactivation of Sir2 causes uptake and catabolism of ethanol and upregulation of many stress-resistance and sporulation genes. These changes while sufficient to extend chronological life span in wild-type yeast require severe calorie restriction or additional mutations to extend life span of sir2Delta mutants. Our results demonstrate that effects of SIR2 on chronological life span are opposite to replicatve life span and suggest that the relevant activities of Sir2-like deacetylases may also be complex in higher eukaryotes.  相似文献   

3.
4.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

5.
6.
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin function. Both yeast and mammalian prohibitins form high-molecular-weight complexes (Phb1/2 or prohibitin/BAP37, respectively) in the inner mitochondrial membrane. Expression of prohibitins declines with senescence, both in mammalian fibroblasts and in yeast. With a total loss of prohibitins, the replicative (budding) life span of yeast is reduced, whilst the chronological life span (the survival of stationary cells over time) is relatively unaffected. This effect of prohibitin loss on the replicative life span is still apparent in the absence of an assembled respiratory chain. It also does not reflect the production of extrachromosomal ribosomal DNA circles (ERCs), a genetic instability thought to be a major cause of replicative senescence in yeast. Examination of cells containing a mitochondrially targeted green fluorescent protein indicates this shortened life span is a reflection of defective mitochondrial segregation from the mother to the daughter in the old mother cells of phb mutant strains. Old mother phb mutant cells display highly aberrant mitochondrial morphology and, frequently, a delayed segregation of mitochondria to the daughter. They often arrest growth with their last bud strongly attached and with the mitochondria adjacent to the septum between the mother and the daughter cell.  相似文献   

7.
Individual cells of the budding yeast, Saccharomyces cerevisiae, have a limited life span and undergo a form of senescence termed replicative aging. Replicative life span is defined as the number of daughter cells produced by a yeast mother cell before she ceases dividing. Replicative aging is asymmetric: a mother cell ages but the age of her daughter cells is 'reset' to zero. Thus, one or more senescence factors have been proposed to accumulate asymmetrically between mother and daughter yeast cells and lead to mother-specific replicative senescence once a crucial threshold has been reached. Here we evaluate potential candidates for senescence factors and age-associated phenotypes and discuss potential mechanisms underlying the asymmetry of replicative aging in budding yeast.  相似文献   

8.
Studies in Drosophila and Caenorhabditis elegans have shown increased longevity with the increased free radical scavenging that accompanies overexpression of oxidant-scavenging enzymes. This study used yeast, another model for aging research, to probe the effects of overexpressing the major activity protecting against superoxide generated by the mitochondrial respiratory chain. Manganese superoxide dismutase (MnSOD) overexpression increased chronological life span (optimized survival of stationary (G0) yeast over time), showing this is a survival ultimately limited by oxidative stress. In contrast, the same overexpression dramatically reduced the replicative life span of dividing cells (the number of daughter buds produced by each newly born mother cell). This reduction in the generational life span by MnSOD overexpression was greater than that generated by loss of the major redox-responsive regulator of the yeast replicative life span, NAD+-dependent Sir2p histone deacetylase. It was also independent of the latter activity. Expression of a mitochondrially targeted green fluorescent protein in the MnSOD overexpressor revealed that the old mother cells of this overexpressor, which had divided for a few generations, were defective in segregation of the mitochondrion from the mother to daughter. Mitochondrial defects are, therefore, the probable reason that MnSOD overexpression shortens replicative life span.  相似文献   

9.
10.
11.
12.
酿酒酵母衰老机制研究进展   总被引:1,自引:0,他引:1  
张爱利 《生命科学》2009,(2):303-306
酿酒酵母衰老机制的研究对解析高等真核生物衰老的分子机制具有重要意义。酿酒酵母有两种衰老形式:时序衰老(chronologicalaging)和复制衰老(replicative aging)。酿酒酵母衰老研究中通常使用的寿命定义有两种:世代寿命和时序寿命。前者是指单个酿酒酵母细胞在死亡之前的分裂次数;后者是指一定数量的酵母细胞在后二次生长和稳定期的存活时间。本文分别综述了这两种衰老形式的分子机制及两者的相同点和不同点。  相似文献   

13.
14.
15.
16.
Caloric restriction (CR) extends the life span of organisms ranging from yeast to primates. Here, we show that the thiol-dependent peroxiredoxin Tsa1 and its partner sulfiredoxin, Srx1, are required for CR to extend the replicative life span of yeast cells. Tsa1 becomes hyperoxidized/inactive during aging, and CR mitigates such oxidation by elevating the levels of Srx1, which is required to reduce/reactivate hyperoxidized Tsa1. CR, by lowering cAMP-PKA activity, enhances Gcn2-dependent SRX1 translation, resulting in increased resistance to H(2)O(2) and life span extension. Moreover, an extra copy of the SRX1 gene is sufficient to extend the life span of cells grown in high glucose concentrations by 20% in?a Tsa1-dependent and Sir2-independent manner. The data demonstrate that Tsa1 is required to ensure yeast longevity and that CR extends yeast life span, in part, by counteracting age-induced hyperoxidation of this peroxiredoxin.  相似文献   

17.
18.
Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.  相似文献   

19.
20.
Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号