首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.  相似文献   

2.
The root cell walls of the resistant cultivars of the date palm were more resistant to the action of the cell wall-degrading enzymes (CWDE) of Fusarium oxysporum f. sp. albedinis than those of the susceptible cultivars. Date palm roots contain four cell wall-bound phenolics identified as p-hydroxybenzoic acid, p-coumaric acid, ferulic acid and sinapic acid. The contents of p-coumaric acid and ferulic acid in the resistant cultivars (IKL, SLY, BSTN) were about 2 times higher than those in the susceptible cultivars (BFG, JHL, BSK). The contents of p-hydroxybenzoic acid and sinapic acid in the resistant cultivars were 8.4 and 4.5 times, respectively, higher than those in the susceptible cultivars. The lignin contents in roots of the resistant cultivars were 1.8 times higher than those of the susceptible cultivars. The cell wall-bound phenols accumulated particularly in resistant cultivars reduced strongly the mycelial growth and the CWDE production in vitro.  相似文献   

3.
Summary Acinetobacter sp. utilized the [ring-14C]dehydropolymer of coniferyl alcohol (DHP) (sp. act. 1.4 × 104 dpm/mg), 14C-labelled teakwood lignin (sp. act. 2.5 × 104 dpm/mg), guaiacolglyceryl ether, 2-methoxy-4-formylphenoxyacetic acid, p-benzyloxyphenol, dehydrodivanillyl alcohol, dehydrodiisoeugenol, veratrylglycerol--guaiacyl ether, conidendrin, black liquor lignin and indulin as sole carbon sources. The bacterium produced p-coumaric acid, p-hydroxybenzoic acid, vanillic acid, protocatechuic acid and catechol as intermediates from lignins. Acinetobacter sp. produced catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase during the degradation of lignins. Correspondence to: A. Mahadevan  相似文献   

4.
The latex of Hevea brasiliensis; clone PR 107, contains from 160 to 1100 μg total phenolics per ml. This wide variability is associated with season, tapping system and application or not of a stimulant (Ethrel). The following aglycones have been identified in hydrolysed extracts: vanillic, salicyclic, syringic, gentisic, p- and m-hydroxybenzoic and protocatechuic acids; scopoletin, aesculetin and coumarin; ferulic, sinapic, caffeic, o- and p-coumaric acids; quercetin and kaempferol; tyrosine and dihydroxyphenylalanine. Flavans and condensed tannins are also present in latex.  相似文献   

5.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

6.
The study presents the comparative analyses of endogenous contents of auxin (IAA), cytokinins (CKs), polyamines (PAs), and phenolic acids (PhAs) in apical and basal parts of elm multiplicated shoots with regard to the organogenic potential. The shoot-forming capacity was higher in the apical part than in the basal part. However, the timing of root formation was in the apical type of explant significantly delayed (compared with the organogenic potential of basal part). Significantly higher contents of free bases, ribosides and ribotides of isopentenyl adenine, zeatin and dihydrozeatin that were found in the apical segments, might be considered as the most important factor affecting in vitro shoot formation. The content of endogenous free IAA was approximately three times higher in the basal shoot parts than in the apical parts. The amounts of putrescine and spermidine were higher in the apical part which generally contains less differentiated tissues than the basal part of shoot. The predominant PhA in both types of explants was caffeic acid, and concentrations of other PhAs decreased in the following order: p-coumaric, ferulic, sinapic, vanillic, chlorogenic, p-hydroxybenzoic and gallic acids. The contents of all determined PhAs in their free forms and higher contents of glycoside-bound p-coumaric, ferulic and sinapic acids, precursors for lignin biosynthesis, were found in the basal parts.  相似文献   

7.
Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do.  相似文献   

8.
Cell walls separated from the aerial parts of Lolium multiflorum, Lolium perenne and Phleum pratense contained bound cis and trans ferulic and p-coumaric acids and diferulic acid which were released from the walls by treatment with sodium hydroxide. The total content of these acids in L. multiflorum ranged from 5 to 16.8 mg/g of wall, the trans-ferulic acid content varying between 2.8 and 8.9 mg/g of wall. In addition, small amounts of p-hydroxybenzoic acid were released from senescent leaf blade plus sheath parts. Cell walls from legume species gave much smaller amounts of the acids, the total content of aerial parts of Trifolium pratense being <0.8 mg/g of wall. The degra dability of the cell walls with a commercial cellulase preparation was determined and the water-soluble phenolic compounds released were estimated by UV absorption spectroscopy.  相似文献   

9.
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.  相似文献   

10.
Lignins are cell wall phenolic heteropolymers which result from the oxidative coupling of three monolignols, p-coumaryl, coniferyl and sinapyl alcohol, in a reaction mediated by peroxidases. The most distinctive variation in the monomer composition of lignins in vascular plants is that found between the two main groups of seed plants. Thus, while gymnosperms lignins are typically composed of G units, with a minor proportion of H units, angiosperms lignins are largely composed of similar levels of G and S units. The presence of S units in angiosperm lignins raises certain concerns in relation with the step of lignin assembly due to the inability of most peroxidases to oxidize syringyl moieties. Zinnia elegans is currently used as a model for lignification studies: – first because of the simplicity and duality of the lignification pattern shown by hypocotyls and stems, in which hypocotyl lignins are typical of angiosperms, while young stem lignins partially resemble those occurring in gymnosperms. Secondly, because of the nature of the peroxidase isoenzyme complement, which is almost completely restricted to the presence of a basic peroxidase isoenzyme, which is capable of oxidizing both coniferyl and sinapyl alcohol, as well as both coniferyl and sinapyl aldehyde. In fact, the versatility of this enzyme is such that the substrate preference covers the three p-hydroxybenzaldehydes and the three p-hydroxycinnamic acids. The basic pI nature of this peroxidase is not an exceptional frame point in this system since basic peroxidases are differentially expressed during lignification in other model systems, show unusual and unique biochemical properties as regards the oxidation of syringyl moieties, and their down-regulation in transgenic plants leads to a reduction in lignin (G+S) levels. Basic peroxidase isoenzymes capable of oxidizing syringyl moieties are already present in basal gymnosperms, an observation that supports the idea that these enzymes were probably present in an ancestral plant species, pre-dating the early radiation of seed plants. It also suggests that the evolutionary gain of the monolignol branch which leads to the biosynthesis of sinapyl alcohol, and of course to syringyl lignins, was not only possible but also favored because the enzymes responsible for its polymerization had evolved previously. In this scenario, it is not surprising that these enzymes responsible for lignin construction appeared early in the evolution of land plants, and have been largely conserved during plant evolution. Abreviations: 4CL –p-hydroxycinnamate CoA ligase; C3H –p-coumarate-3-hydroxylase; C4H – cinnamate-4-hydroxylase; p-CA –p-coumaric acid; CAD – coniferyl alcohol dehydrogenase; CAld5H – coniferylaldehyde-5-hydroxylase; CCR –p-hydroxycinnamoyl-CoA reductase; CoI – compound I; CoII – compound II; G – guaiacyl unit; H –p-hydroxyphenyl unit; PAL – phenylalanine ammonia-lyase; S – syringyl unit.  相似文献   

11.
Soybean root growth inhibition and lignification induced by p-coumaric acid   总被引:1,自引:0,他引:1  
The effects of 0.25–2 mM p-coumaric acid, a phenylpropanoid metabolite with recognized allelopathic properties, were tested on root growth, cell viability, phenylalanine ammonia-lyase (PAL) activities, soluble and cell wall-bound peroxidase (POD) activities, hydrogen peroxide (H2O2) level and lignin content and its monomeric composition in soybean (Glycine max (L.) Merr.) roots. At ≥0.25 mM, exogenously supplied p-coumaric acid induced premature cessation of root growth, increased POD activity and lignin content and decreased the H2O2 content. At ≥0.5 mM, the allelochemical decreased the cell viability and PAL activity. When applied jointly with PIP (an inhibitor of the cinnamate 4-hydroxylase, C4H), 1 mM p-coumaric acid increased lignin content. In contrast, the application of MDCA (an inhibitor of the 4-coumarate:CoA ligase, 4CL) with p-coumaric acid did not increase lignin content. The lignin monomeric composition of p-coumaric acid-exposed roots revealed a significant increase of p-hydroxyphenyl (H) and guaiacyl (G) units. Taken together, these results suggest that p-coumaric acid's mode of action is entry via the phenylpropanoid pathway, resulting in an increase of H and G lignin monomers that solidify the cell wall and restrict soybean root growth.  相似文献   

12.
Fungal laccase oxidized derivatives of hydroxycinnamic acid. The rates decreased in the order sinapic acid > ferulic acid ≥p-coumaric acid. The laccase oxidized sinapyl alcohol faster than coniferyl alcohol. The rates of oxidation of the hydroxycinnamic acid derivatives by an isoenzyme of peroxidase from horseradish decreased in the order p-coumaric acid > ferulic acid ≥ sinapic acid. The peroxidase oxidized coniferyl alcohol much faster than sinapyl alcohol. The laccase and the peroxidase predominantly oxidized (a) ferulic acid in a reaction mixture that contained p-coumaric acid and ferulic acid, (b) sinapic acid in a mixture of p-coumaric acid plus sinapic acid, and (c) sinapic acid in a mixture of ferulic acid plus sinapic acid. In a reaction mixture that contained both coniferyl and sinapyl alcohols, both fungal laccase and horseradish peroxidase predominantly oxidized sinapyl alcohol. From these results, it is concluded (1) that the p-hydroxyphenyl radical can oxidize guaiacyl and syringyl groups and produce their radicals and (2) that the guaiacyl radical can oxidize the syringyl group under formation of its radical; and that (3) in both cases the reverse reactions are very slow.  相似文献   

13.
Degradation of phenylalanine and tyrosine by Sporobolomyces roseus   总被引:3,自引:2,他引:1  
Ammonia-lyase activity for l-phenylalanine, m-hydroxyphenylalanine and l-tyrosine was demonstrated in cell-free extracts of Sporobolomyces roseus. Cultures of this organism converted dl-[ring-14C]phenylalanine and l-[U-14C]tyrosine into the corresponding cinnamic acid. Tracer studies showed that these compounds were further metabolized to [14C]protocatechuic acid. Benzoic acid and p-hydroxybenzoic acid were intermediates in this pathway. Washed cells of the organism readily utilized cinnamic acid, p-coumaric acid, caffeic acid, benzoic acid and p-hydroxybenzoic acid. Protocatechuic acid was the terminal aromatic compound formed during the metabolism of these compounds. The cells of S. roseus were able to convert m-coumaric acid into m-hydroxybenzoic acid, but the latter compound, which accumulated in the medium, was not further metabolized. 4-Hydroxycoumarin was identified as the product of o-coumaric acid metabolism by this organism.  相似文献   

14.
《Process Biochemistry》2007,42(5):913-918
In this study, de-juiced Italian ryegrass and timothy grass were successfully fractionated into one chlorophyll rich fraction, two lignin fractions, two hemicellulosic preparations, and one cellulosic fraction by sequential processes with 80% ethanol containing 0.2% NaOH, 2.5% H2O2–0.2% EDTA containing 1.5% NaOH, and 2.5% H2O2–0.2% TAED containing 1.0% NaOH at 75 °C for 3 h, respectively. The yields of chlorophyll rich fraction and total lignin fraction were found to be 6.1 and 11.0% from de-juiced Italian ryegrass, and 12.7 and 13.2% from de-juiced timothy grass. It should be noted that the two chlorophyll rich fractions contained noticeable amounts of contaminated hemicelluloses (17.1–18.8%) and lignin, whereas the four lignin fractions contained only small amounts of bound hemicelluloses (5.6–8.6%). Nitrobenzene oxidation and NMR spectra of the lignin fraction revealed that the presence of both guaiacyl and syringyl units, as well as p-hydroxyphenyl structures. Small amounts of esterified p-coumaric acids and mainly etherified ferulic acids were also identified in the lignin fractions. It was found that the lignin fractions obtained from the two different grasses had very similar structural composition. They are distinguished by rather low amounts of β-O-4 structures, resinol units (β-β), and of condensed units (β-5 and 5-5). This trait is even more pronounced in the production of phenolic compounds for chemical industry from grass.  相似文献   

15.

Background

For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction.

Results

We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88?C95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of ??-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates.

Conclusions

It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of lignin structures and compositions could be linked to quantifiable changes in the composition of the cell wall and properties of the lignin including apparent content of the p-hydroxycinnamates while the limitations of S/G estimation in grasses is highlighted.  相似文献   

16.
Metabolite Profiles of Lactic Acid Bacteria in Grass Silage   总被引:1,自引:0,他引:1       下载免费PDF全文
The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms).  相似文献   

17.
A survey of a range of plant tissues showed that the hydroxycinnamate CoA ligase in crude extracts of pea shoots had a high relative activity towards sinapic and other methoxycinnamic acids, together with high activity with p-coumaric acid. The pea enzyme has been resolved by chromatography on DEAE-cellulose into two peaks which differ in their substrate specificity. The form which elutes at relatively low salt concentrations has a ratio activity towards p-coumaric and sinapic acids of about 1.8:1 while the form eluting at higher salt concentrations, although showing very high activity with p-coumaric acid, is inactive towards sinapic acid. The pattern of elution of these forms following gel filtration on Ultragel AcA 34 and Sephadex G100 suggests that these two isoenzymes which differ in ionic properties and substrate specificity can exist in two or three molecular weight forms and there is evidence that these forms are under certain circumstances interconvertible.  相似文献   

18.
The ability of Streptomyces ipomoea laccase to polymerize secoisolariciresinol lignan and technical lignins was assessed. The reactivity of S. ipomoea laccase was also compared to that of low redox fungal laccase from Melanocarpus albomyces using low molecular mass p-coumaric, ferulic and sinapic acid as well as natural (acetosyringone) and synthetic 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) mediators as substrates. Oxygen consumption measurement, MALDI-TOF MS and SEC were used to follow the enzymatic reactions at pH 7, 8, 9 and 10 at 30 °C and 50 °C. Polymerization of lignins and lignan by S. ipomoea laccase under alkaline reaction conditions was observed, and was enhanced in the presence of acetosyringone almost to the level obtained with M. albomyces laccase without mediator. Reactivities of the enzymes towards acetosyringone and TEMPO were similar, suggesting exploitation of the compounds and low redox laccase in lignin valorization under alkaline conditions. The results have scientific impact on basic research of laccases.  相似文献   

19.
Phenolic compounds released during pretreatment of lignocellulosic biomass influence its enzymatic hydrolysis. To understand the effects of these compounds on the kinetic properties of xylan-degrading enzymes, the present study employed the recombinant cellulosomal endo-β-1,4-xylanase, thermostable GH11 XynA protein from Clostridium thermocellum, as an enzyme model to evaluate the effects of 4-hydroxybenzoic acid, gallic acid, vanillin, tannic acid, p-coumaric acid, ferulic acid, syringaldehyde, and cinnamic acid. XynA was deactivated by the assayed phenols at 60 °C, presenting the strongest deactivation in the presence of tannic acid, with an activity reduction of about 80 %. Thermal stability of XynA was influenced by ferulic acid, syringaldehyde, cinnamic acid, 4-hydroxybenzoic acid, and p-coumaric acid. The hydrolysis rate of oat-spelt xylan by XynA was influenced by temperature, being unable to hydrolyze at 40 °C in the presence of tannic acid. On hydrolysis at 60 °C, the presence of gallic and tannic acid caused a major reduction in reducing sugar production, generating 3.74 and 2.15 g.L-1 of reducing sugar, respectively, whereas the reaction in the absence of phenols generated 4.41 g.L-1. When XynA was pre-deactivated by phenols it could recover most of its activity at 40 °C, however, at 60 °C activity could not be reestablished.  相似文献   

20.
The bonding of the bound-phenolic acids present in three lignin preparations isolated from wheat straw where determined. p-Coumaric acid was mainly ester-linked whereas 35–75% of the recovered ferulic acid was ether-linked to milled straw lignin or enzyme lignin. Ferulic acid ethers accounted for 1.1% dry wt of alkali extracted lignin and might explain the high solubility of Gramineae lignins in soda. Isolated lignins were associated to hemicelluloses, principally arabinoglucuronoxylans. The possible existence of ferulic acid cross-links between lignin and arabinoglucuronoxylans is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号