首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The protein-keratan sulfate core of bovine nasal cartilage proteoglycan was purified by affinity chromatography on a column of immobilized hyaluronic acid. The hyaluronic acid was immobilized by reaction with a hydrazido-alkyl derivative of Sepharose in the presence of borohydride. Proteoglycan was digested with chondroitinase ABC and the entire mixture was passed over a column of the Sepharose-hyaluronic acid maintained at 4°C. After the digested chondroitin sulfate chains were washed from the column, the bound protein-keratan sulfate core was eluted with 4m guanidinium chloride. The protein-keratan sulfate core interacts with the affinity matrix through its hyaluronic acid binding site as shown by the inhibition of binding by free hyaluronic acid and hyaluronic acid decasaccharide.  相似文献   

2.
The binding of the basement-membrane glycoprotein laminin to glycosaminoglycans (aggregating and non-aggregating subsets of heparan sulphates and dermatan sulphates, as well as heparin, chondroitin sulphates and hyaluronic acid) was studied by affinity chromatography. Partially periodate-oxidized chains of glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. Co-polymeric glycosaminoglycans reveal high affinity for laminin, whereas hyaluronic acid does not. Competitive-release experiments indicate that glycosaminoglycans share a common binding site on the laminin molecule.  相似文献   

3.
Hyaluronic acid binding protein (HBP) has been purified to homogeneity from normal rat brain by using Hyaluronate-Sepharose affinity chromatography. It appears as a single band in non-dissociating gel electrophoresis. The molecular weight of native protein, as determined by gel filtration is found to be 68,000 daltons, and has a single subunit of molecular weight approximately 13,500 as determined under denaturing conditions in polyacrylamide gel electrophoresis, indicating that this protein is apparently composed of five identical subunits. Amino acid analysis shows the purified HBP to be rich in glycine and glutamic acid content, and is distinct from fibronectin, link proteins, and gelatin binding proteins which are known to bind to hyaluronic acid. This protein is further characterised as sialic acid containing glycoprotein.  相似文献   

4.
A novel high-molecular heparin-hyaluronate-binding protein complex (HHBPC) was isolated from the human brain using techniques of affinity chromatography on heparin-agarose and subsequent gel filtration on Sefacril S-300. The HHBPC molecular mass, as estimated with the use of gel filtration, was 630 kdalton. The complex could be separated into six polypeptides (120, 70, 60, 56, 52, and 47 kdalton), using electrophoresis in a polyacrylamide gel. The purified HHBPC contained 38% of glycosaminoglycans. Interaction of HHBPC with the glycosaminoglycans depended on pH and did not substantially depend on the ionic power of the solution. Using Scatchard plots, the presence of two binding sites, for heparin and hyaluronic acid, was demonstrated.  相似文献   

5.
酶标白桂木凝集素糖蛋白结合特性的分析   总被引:3,自引:0,他引:3  
采用辣根过氧化物酶 ( HRP)标记白桂木凝集素 ( AHL) ,应用酶联夹心法及糖竞争抑制实验 ,研究 AHL的糖蛋白结合特性 .研究表明 ,AHL能与两种不同类型的糖蛋白结合 ,一类以胃蛋白酶为代表 ,AHL能以高亲和力与胃蛋白酶结合 .其次能与β-乳球蛋白、牛血清清蛋白结合 ,但结合力依次递减 .AHL也能与透明质酸以较高亲和力相结合 .AHL与胃蛋白酶、β-乳球蛋白、牛血清清蛋白、透明质酸的结合受 Me- Gal的强烈竞争抑制 ,亦受 Me- Man\D- Gal\Raf的抑制 .另一类为Con A,AHL与 Con A的结合受 Me- Man的强烈竞争抑制 ,并受 Me- Glc\D- Man\D- Fru\D- Glc的较强抑制 .各种糖的封闭性抑制实验结果与竞争性抑制实验相似 .提示 AHL上存在 O-糖苷键结合位点 .  相似文献   

6.
Interaction of Hyaluronectin with Hyaluronic Acid Oligosaccharides   总被引:5,自引:0,他引:5  
Hyaluronic acid was digested by bovine testicular hyaluronidase, and oligomers were fractionated by gel permeation using AcA 202 Ultrogel, an acrylamide-agarose matrix. Oligosaccharides composed of from two to six disaccharide repeating units were isolated. Two nonasaccharides were prepared by enzymatic or chemical modification of the decasaccharide. Oligosaccharides were compared by a competitive inhibition in the enzyme-linked immunosorbent assay for their ability to inhibit the interaction of hyaluronectin (a hyaluronic acid-binding brain glycoprotein) with hyaluronic acid. Among these oligosaccharides, decasaccharides were the smallest fragments that strongly inhibited the interaction. Octasaccharides inhibited with 700-fold lower affinity than decasaccharides. Dodecasaccharides had the same effect as decasaccharides. Nonasaccharides obtained by beta-glucuronidase splitting of decasaccharides inhibited the interaction more than nonasaccharides prepared by an alkaline treatment.  相似文献   

7.
(1) Wardi , Allen , Turner and Stary (1966) and Margolis (1967) have reported that arabinose is a component of hyaluronic acid from mammalian brain. (2) In the present study, total acidic polysaccharide and hyaluronic acid fractions were isolated from lipid-extracted and proteolysed bovine brain by precipitation with cetyltri-methylammonium bromide. These fractions were analysed for arabinose by paper chromatography of deionized hydrolysates and by gas-liquid chromatography of per(trimethylsilyl)ated methanolysates. (3) Two pentoses, xylose and ribose, were detected. Arabinose was analytically undetectable in both polysaccharide fractions, but was easily detected in a control polysaccharide containing 0-1% (w/w) arabinose. Arabinose, if present in hyaluronic acid from bovine brain, constitutes less than 0.1 mol per mol of hyaluronic acid (molecular weight 1.5 x 106 daltons).  相似文献   

8.
The affinity of hyaluronic acid binding protein (HBP) to different glycosaminoglycans (GAGs) was examined. The purified protein was pretreated with hyaluronic acid (HA), heparin, glucuronic acid and N-Acetyl-glucosamine and was loaded onto Hyaluronate-Sepharose affinity column. The binding of HBP to HA immobilized on sepharose column was specifically blocked only by pretreatment of HBP to HA and the elution of HBP was decreased proportionately with the addition of higher quantity of HBP. The specificity of HBP to HA was confirmed as it did not bind to Heparin-Sepharose or Chondroitin-4-Sulphate-Sepharose columns. The complex of HBP in association with HA was further shown on Sephadex G-200 and 7.5% polyacrylamide gel. All the experimental findings indicate that HBP binds specifically to HA only.  相似文献   

9.
Recent biochemical and sequence data suggest a possible relationship between Pgp-1 (identical to CD44/Hermes 1/p85) and a hyaluronic acid-binding function. Here, we have studied the hyaluronic acid-binding activity of a series of murine hematopoietic cell lines using several assays: cell aggregation by hyaluronic acid, binding of fluorescein-conjugated hyaluronic acid, and cell adhesion to hyaluronic acid-coated dishes. Certain Pgp-1-positive T and B cell lines show hyaluronic acid binding that is highly specific and is not competed for by other glycosaminoglycans. Monoclonal antibodies against Pgp-1, but not antibodies against other major cell surface glycoproteins, inhibited hyaluronic acid-induced cell aggregation and cell adhesion to hyaluronic acid-coated dishes. Additionally, some anti-Pgp-1 antibodies inhibited binding of fluorescein-hyaluronic acid to hyaluronic acid-binding lines. We found no Pgp-1-negative lines that bound, but many Pgp-1-positive cell lines did not bind hyaluronic acid. Two Pgp-1-positive thymomas that did not bind hyaluronic acid were induced by phorbol ester to bind hyaluronic acid with the same specificity as other hyaluronic acid-binding lines. Normal hematopoietic cells, including those which express high levels of Pgp-1, such as bone marrow myeloid cells and splenic lymphocytes, showed no detectable hyaluronic acid-binding activity. We discuss several models that might account for these observations: (1) the hyaluronic acid receptor is Pgp-1, but it normally exists in an inactive state; (2) hyaluronic acid receptors are a subset of a family of molecules recognized by anti-Pgp-1 antibodies; (3) the hyaluronic acid receptor is not Pgp-1, but is closely associated with Pgp-1 on the surface of cells which express hyaluronic acid-binding activity.  相似文献   

10.
Solubilization of Kainic Acid Binding Sites from Rat Brain   总被引:7,自引:5,他引:2  
Kainic acid binding sites were solubilized from rat brain using a combination of Triton X-100 and digitonin. The highest percentage of solubilized binding sites (45%) was obtained by treating brain membranes with 1% Triton-X-100 and 0.2% digitonin in 0.5 M potassium phosphate containing 20% glycerol. The solubilized binding sites were stable and amenable to analysis by gel filtration and lectin affinity chromatography. Computer assisted analyses demonstrated that the solubilized sites displayed high- and low-affinity binding constants similar to the membrane-bound sites. Competition experiments further supported the pharmacological similarities of the solubilized and membrane-bound sites. Gel filtration chromatography of the solubilized binding site indicated that the detergent-bound complex had a Stokes radius of 82.7 A. The [3H]kainic acid binding site appears to be glycosylated based on its capability to bind to lectins. The lectin, wheatgerm agglutinin, proved to be a potentially useful tool for characterization because the solubilized binding sites were bound and eluted in relatively high yield.  相似文献   

11.
The relative binding affinity of Zn2+ to several glycosaminoglycans was determined by gel-filtration chromatography. Binding was observed only between Zn2+ and heparin. No binding was observed between Zn2+ and chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate of hyaluronic acid. All of the glycosaminoglycans contained carboxy groups, but only heparin bound Zn2+. This observation suggests that, contrary to a previously proposed hypothesis, simple electrostatic interactions between the negatively charged carboxy groups of the glycosaminoglycans and the positively charged Zn2+ cannot explain the observed binding.  相似文献   

12.
Unesterified long-chain fatty acids strongly inhibited thyroid hormone (T3) binding to nuclear receptors extracted from rat liver, kidney, spleen, brain, testis and heart. Oleic acid was the most potent inhibitor, attaining 50% inhibition at 2.8 microM. Oleic acid similarly inhibited the partially purified receptor and enhanced dissociation of the preformed T3-receptor complex. The fatty acid acted in a soluble form and in a competitive manner for the T3-binding sites, thereby reducing the affinity of the receptor for T3. The affinity of the receptor for oleic acid (Ki) was 1.0 microM. In HTC rat hepatoma cells in culture, fatty acids added to the medium reached the nucleus and inhibited nuclear T3 binding; oleic acid being the most potent. T3 binding of the cells was reversibly restored in fresh medium free of added fatty acids. Oleic acid did not affect all the T3-binding sites in the HTC cells: one form (80%) was inhibited and the other was not and these two forms were commonly present in all rat tissues examined. Thus, fatty acids inhibited the solubilized nuclear receptor as well as a class of nuclear T3-binding sites in cells in culture.  相似文献   

13.
Highly purified noradrenergic, large, dense-cored vesicles were isolated from bovine sympathetic nerve endings by sucrose-D2O density gradient centrifugation. Their concentration of glycoprotein hexosamine and sialic acid was 6.6 and 3.9 mumol/100 mg lipid-free dry weight, respectively, values which are similar to those previously found in bovine chromaffin granules. However, whereas chromaffin granule glycoproteins are characterized by their high proportion of N-acetylgalactosamine-containing O-glycosidically-linked oligosaccharides (present in the chromogranins), such oligosaccharides accounted for only 17% of those in noradrenergic synaptic vesicle glycoproteins. Fractionation of N-3H-acetylated glycopeptides by sequential lectin affinity chromatography demonstrated that approximately two-thirds of the oligosaccharides were of the tri- and tetraantennary complex type, accompanied by 14% biantennary oligosaccharides and 3% high-mannose oligosaccharides. The vesicles had a relatively low concentration of chondroitin sulfate (less than 5% of that in chromaffin granules) but significant amounts of heparan sulfate (0.4 mumol N-acetylglucosamine/100 mg lipid-free dry weight). No hyaluronic acid was detected. The concentration of ganglioside sialic acid in the noradrenergic vesicles was approximately 1 mumol/100 mg lipid-free dry weight, which is significantly higher than that of a crude membrane mixture from which the vesicles were prepared; the ratio of N-acetyl- to N-glycolylneuraminic acid was 0.8. Several molecular species of gangliosides were detected by thin-layer chromatography, but most of these did not exactly comigrate with bovine brain gangliosides. Cholera toxin binding indicated that approximately half or less of the gangliosides belong to the gangliotetraose series.  相似文献   

14.
Human serum amyloid P component (SAP) was found to agglutinate erythrocytes in the presence of calcium ion. The hemagglutination was strongly inhibited by hyaluronic acid as well as by heparan sulfate and dermatan sulfate, but not by chondroitin 4-sulfate and keratan sulfate. A specific binding of SAP to hyaluronic acid, heparan sulfate, and dermatan sulfate was also confirmed by the fact that these glycosaminoglycans blocked the binding of SAP to agarose, a specific ligand of SAP.  相似文献   

15.
Bromocolchicine, synthesized by substituting tho N-acetyl moiety of colchicine with a reactive bromoacetyl group, was found to be an affinity label for tubulin. Binding of [3H]colchicine to tubulin was competitively and irreversibly inhibited by bromocolchicine with a Ki value of 2.3 × 10?5m. The affinity label could not be displaced by precipitating the protein with trichloroacetic acid and is thus covalently bound. Autoradiographs of brain high-speed supernatant proteins after their electrophoretic separation on sodium dodecyl sulphate/polyacrylamide gels showed that [3H]bromocolchicine reacted with four proteins, of which tubulin was one.Labelling of two of these proteins could be prevented by pretreatment of the brain extracts with α-bromoacetic acid, after which 70% of the covalently bound label was specifically located in the tubulin band. Up to 1.6 mol of affinity label could be bound per mol of tubulin, while under our experimental conditions 1 mol of protein bound irreversibly only 0.2 mol of [3H]colchicine. Autoradiography of sodium dodecyl sulphate/urea-polyacrylamide gels, which separate the subunits of tubulin, showed about 30% [3H] bromocolchicine bound to the α-subunit of tubulin and 70% to tho β-subunit.The irreversible binding site of colchicine was localized to the α-subunit, as labelling of only this subunit was inhibited by colchicine at high affinity label concentrations. At lower concentrations, colchicine inhibited the labelling of both subunits.Bromoacetic acid did not inhibit the reaction of the affinity label with the tubulin subunits, but increased the inhibition of [3H]bromocolchicine binding at lower concentrations of the affinity label in brain extracts preincubated with cold colchicine. This is interpreted to show a conformational change which takes place in the two subunits of tubulin upon binding of colchicine and results in the exposure of some of the binding sites of [3H]bromocolchicine to bromoacetic acid.  相似文献   

16.
Interactions of fibronectin and glycosaminoglycans and the involvement of heparan sulphate and hyaluronate in fibronectin-collagen interactions have been studied by affinity chromatography. Partially periodate-oxidized glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. The elution of fibronectin was performed by using increasing concentrations of NaCl. Of the copolymeric glycosaminoglycans, heparin and self-associating heparan sulphates display the highest affinity towards fibronectin while hyaluronic acid and chondroitin 6-sulphate do not bind fibronectin. Competitive release experiments suggest the existence of common binding sites for copolymeric glycosaminoglycans on the fibronectin backbone. Heparan sulphate favours the formation of collagen-fibronectin complexes at low molarity, while hyaluronate is ineffective at low concentrations and prevents the formation of complexes when present at concentrations > 1 mg ml?1. It is suggested that heparan sulphate promotes the formation of complexes which bind with fibronectin thus producing steric changes that increase the affinity for collagen, while hyaluronate prevents the binding of fibronectin to collagen by a steric exclusion mechanism.  相似文献   

17.
Specific binding activity of radiolabeled L-glutamic acid, a putative central excitatory neutrotransmitter, was drastically increased with increasing concentrations of Triton X-100 used for pretreatment of rat brain synaptic membranes. The binding in these Triton-treated membranes was a protein dependent, inversely temperature-dependent, stereospecific, structure-selective and saturable process with a high affinity for the amino acid. The binding activity was invariably inhibited by agonists and antagonists for the N-methyl-D-aspartic acid (NMDA)-sensitive subclass, but not by agonists for the other subclasses of excitatory amino acid neurotransmitter receptors in the brain. Scatchard analysis revealed that the binding sites consisted of a single component with a Kd of 24.4 +/- 2.5 nM and a Bmax of 0.94 +/- 0.09 pmol/mg protein. Some endogenous tryptophan metabolites such as kynurenic acid and quinolinic acid also inhibited the binding. These results suggest that synaptic membranes may indeed contain the NMDA-sensitive receptors which are disclosed by Triton X-100 treatment.  相似文献   

18.
The concentration of hyaluronic acid, chondroitin sulfate, and heparan sulfate was measured in rat brain at 2-day intervals from birth to 1 month of age, and in 40-day-old and adult animals. The levels of all three glycosaminoglycans increased after birth to reach a peak at 7 days after which they declined steadily, attaining by 30 days concentrations within 10% of those present in adult brain. The greatest change was seen in hyaluronic acid, which decreased by 50% in 3 days, and declined to adult levels (28% of the peak concentration) by 18 days of age. Only heparan sulfate showed a significant change in metabolic activity during development (a fourfold increase in the relative specific activity of glucosamine), most of which occurred after 1 week of age. In 7-day-old rats almost 90% of the hyaluronic acid in brain is extractable by water alone, as compared to only 15% in adult animals, and this large amount of soluble hyaluronic acid in young rat brain is relatively inactive metabolically. On the basis of our data we propose that the higher amounts of hyaluronic acid found in very young brain may be responsible for the higher water content of brain at these ages, and that the hydrated hyaluronic acid serves as a matrix through which neuronal migration and differentiation may take place during early brain development.  相似文献   

19.
Specific binding of radiolabeled L-glutamic acid (Glu) was examined using rat brain synaptic membranes treated with a low concentration of Triton X-100. The binding drastically increased in proportion to increasing concentrations of the detergent used up to 0.1%. Addition of 100 mM sodium acetate significantly potentiated the binding in membranes not treated with Triton X-100, whereas it markedly inhibited the binding in Triton-treated membranes. The binding in Triton-treated membranes was inversely dependent on incubation temperature and reached a plateau within 10 min after the initiation of incubation at 2 degrees C, whereas the time required to attain equilibrium at 30 degrees C was less than 1 min. Sodium acetate invariably inhibited the binding detected at both temperatures independently of the incubation time via decreasing the affinity for the ligand. The binding was significantly displaced by agonists and antagonists for an N-methyl-D-aspartate (NMDA)-sensitive subclass of brain excitatory amino acid receptors, but not by those for the other subclasses. Inclusion of sodium acetate reduced the potencies of NMDA agonists to displace the binding without virtually affecting those of NMDA antagonists. Moreover, sodium ions inhibited the ability of Glu to potentiate the binding of N-[3H] [1-(2-thienyl)cyclohexyl]piperidine to open NMDA channels in Triton-treated membranes. These results suggest that sodium ions may play an additional modulatory role in the termination process of neurotransmission mediated by excitatory amino acids via facilitating a transformation of the NMDA recognition site from a state with high affinity for agonists to a state with low affinity.  相似文献   

20.
Characterization of hyaluronic acid on tissue sections with hyaluronectin   总被引:2,自引:0,他引:2  
An affinity immunological procedure for hyaluronic acid detection on tissue sections is described. This new, sensitive, and specific technique is based on the high affinity of hyaluronectin for hyaluronic acid, utilizing anti-hyaluronectin-hyaluronectin immune complexes. Elimination of binding when the reagent was supplemented with hyaluronic acid or when Streptomyces hyaluronidase-digested tissue sections were used emphasizes the specificity of the assay. This technique made possible accurate HA localization in embryonic mesenchyme, in neural tissue, in kidney medulla, and in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号