首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fang Q  Chen YZ  Huang SQ 《Annals of botany》2012,109(2):379-384

Background and Aims

Winter-flowering plants outside the tropics may experience a shortage of pollinator service, given that insect activity is largely limited by low temperature. Birds can be alternative pollinators for these plants, but experimental evidence for the pollination role of birds in winter-flowering plants is scarce.

Methods

Pollinator visitation to the loquat, Eriobotrya japonica (Rosaceae), was observed across the flowering season from November to January for two years in central China. Self- and cross-hand pollination was conducted in the field to investigate self-compatibility and pollen limitation. In addition, inflorescences were covered by bird cages and nylon mesh nets to exclude birds and all animal pollinators, respectively, to investigate the pollination role of birds in seed production.

Results

Self-fertilization in the loquat yielded few seeds. In early winter insect visit frequency was relatively higher, while in late winter insect pollinators were absent and two passerine birds (Pycnonotus sinensis and Zosterops japonicus) became the major floral visitors. However, seed-set of open-pollinated flowers did not differ between early and late winter. Exclusion of bird visitation greatly reduced seed-set, indicating that passerine birds were important pollinators for the loquat in late winter. The whitish perigynous flowers reward passerines with relatively large volumes of dilute nectar. Our observation on the loquat and other Rosaceae species suggested that perigyny might be related to bird pollination but the association needs further study.

Conclusions

These findings suggest that floral traits and phenology would be favoured to attract bird pollinators in cold weather, in which insect activity is limited.  相似文献   

2.

Background and Aims

Pollinator-mediated selection and evolution of floral traits have long fascinated evolutionary ecologists. No other plant family shows as wide a range of pollinator-linked floral forms as Orchidaceae. In spite of the large size of this model family and a long history of orchid pollination biology, the identity and specificity of most orchid pollinators remains inadequately studied, especially in the tropics where the family has undergone extensive diversification. Angraecum (Vandeae, Epidendroideae), a large genus of tropical Old World orchids renowned for their floral morphology specialized for hawkmoth pollination, has been a model system since the time of Darwin.

Methods

The pollination biology of A. cadetii, an endemic species of the islands of Mauritius and Reunion (Mascarene Islands, Indian Ocean) displaying atypical flowers for the genus (white and medium-size, but short-spurred) was investigated. Natural pollinators were observed by means of hard-disk camcorders. Pollinator-linked floral traits, namely spur length, nectar volume and concentration and scent production were also investigated. Pollinator efficiency (pollen removal and deposition) and reproductive success (fruit set) were quantified in natural field conditions weekly during the 2003, 2004 and 2005 flowering seasons (January to March).

Key Results

Angraecum cadetii is self-compatible but requires a pollinator to achieve fruit set. Only one pollinator species was observed, an undescribed species of raspy cricket (Gryllacrididae, Orthoptera). These crickets, which are nocturnal foragers, reached flowers by climbing up leaves of the orchid or jumping across from neighbouring plants and probed the most ‘fresh-looking’ flowers on each plant. Visits to flowers were relatively long (if compared with the behaviour of birds or hawkmoths), averaging 16·5 s with a maximum of 41·0 s. At the study site of La Plaine des Palmistes (Pandanus forest), 46·5 % of flowers had pollen removed and 27·5 % had pollinia deposited on stigmas. The proportion of flowers that set fruit ranged from 11·9 % to 43·4 %, depending of the sites sampled across the island.

Conclusions

Although orthopterans are well known for herbivory, this represents the first clearly supported case of orthopteran-mediated pollination in flowering plants.  相似文献   

3.

Background and Aims

If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome.

Methods

Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations.

Key Results

Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus.

Conclusions

This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.  相似文献   

4.

Background and Aims

Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae).

Methods

Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively.

Key Results

All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees'' bodies.

Conclusions

The Pedicularis species studied in the eastern Himalayan region did not conform with Grant''s ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners.  相似文献   

5.

Background and Aims

Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico.

Methods

The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined.

Key Results

Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae).

Conclusions

This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.  相似文献   

6.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

7.

Background and Aims

Delayed selfing is the predominant mode of autonomous self-pollination in flowering plants. However, few delayed selfing mechanisms have been documented. This research aims to explore a new delayed selfing mechanism induced by stigmatic fluid in Roscoea debilis, a small perennial ginger.

Methods

Floral biology and flower visitors were surveyed. The capacity of autonomous selfing was evaluated by pollinator exclusion. The timing of autonomous selfing was estimated by emasculation at different flowering stages. The number of seeds produced from insect-pollination was assessed by emasculation and exposure to pollinators in the natural population. The breeding system was also tested by pollination manipulations.

Key Results

Autonomous self-pollination occurred after flowers wilted. The stigmatic fluid formed a globule on the stigma on the third day of flowering. The enlarged globule seeped into the nearby pollen grains on the fourth flowering day, thus inducing pollen germination. Pollen tubes then elongated and penetrated the stigma. Hand-selfed flowers produced as many seeds as hand-crossed flowers. There was no significant difference in seed production between pollinator-excluded flowers and hand-selfed flowers. When emasculated flowers were exposed to pollinators, they produced significantly fewer seeds than intact flowers. Visits by effective pollinators were rare.

Conclusions

This study describes a new form of delayed autonomous self-pollination. As the predominant mechanism of sexual reproduction in R. debilis, delayed self-pollination ensures reproduction when pollinators are scarce.  相似文献   

8.

Background and Aims

Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees.

Methods

For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology.

Key Results

Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape.

Conclusions

Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes.  相似文献   

9.

Background and Aims

Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators.

Methods

We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations.

Key Results

Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis.

Conclusions

Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.  相似文献   

10.

Background and Aims

Several members of Bromeliaceae show adaptations for hummingbird pollination in the Neotropics; however, the relationships between floral structure, nectar production, pollination and pollinators are poorly understood. The main goal of this study was to analyse the functional aspects of nectar secretion related to interaction with pollinators by evaluating floral biology, cellular and sub-cellular anatomy of the septal nectary and nectar composition of Ananas ananassoides, including an experimental approach to nectar dynamics.

Methods

Observations on floral anthesis and visitors were conducted in a population of A. ananassoides in the Brazilian savanna. Nectary samples were processed using standard methods for light and transmission electron microscopy. The main metabolites in nectary tissue were detected via histochemistry. Sugar composition was analysed by high-performance liquid chromatography (HPLC). The accumulated nectar was determined from bagged flowers (‘unvisited’), and floral response to repeated nectar removal was evaluated in an experimental design simulating multiple visits by pollinators to the same flowers (‘visited’) over the course of anthesis.

Key Results

The hummingbirds Hylocharis chrysura and Thalurania glaucopis were the most frequent pollinators. The interlocular septal nectary, composed of three lenticular canals, extends from the ovary base to the style base. It consists of a secretory epithelium and nectary parenchyma rich in starch grains, which are hydrolysed during nectar secretion. The median volume of nectar in recently opened ‘unvisited’ flowers was 27·0 µL, with a mean (sucrose-dominated) sugar concentration of 30·5 %. Anthesis lasts approx. 11 h, and nectar secretion begins before sunrise. In ‘visited’ flowers (experimentally emptied every hour) the nectar total production per flower was significantly higher than in the ‘unvisited’ flowers (control) in terms of volume (t = 4·94, P = 0·0001) and mass of sugar (t = 2·95, P = 0·007), and the concentration was significantly lower (t = 8·04, P = 0·0001).

Conclusions

The data suggest that the total production of floral nectar in A. ananassoides is linked to the pollinators'' activity and that the rapid renewal of nectar is related to the nectary morphological features.  相似文献   

11.

Background and Aims

Plants are adapted for rodent pollination in diverse and intricate ways. This study explores an extraordinary example of these adaptations in the pincushion Leucospermum arenarium (Proteaceae) from South Africa.

Methods

Live trapping and differential exclusion experiments were used to test the role of rodents versus birds and insects as pollinators. To explore the adaptive significance of geoflory, inflorescences were raised above ground level and seed production was compared. Captive rodents and flowers with artificial stigmas were used to test the effect of grooming on the rate of pollen loss. Microscopy, nectar composition analysis and manipulative experiments were used to investigate the bizarre nectar production and transport system.

Key Results

Differential exclusion of rodents, birds and insects demonstrated the importance of rodents in promoting seed production. Live trapping revealed that hairy-footed gerbils, Gerbillurus paeba, and striped field mice, Rhabdomys pumilio, both carried L. arenarium pollen on their forehead and rostrum, but much larger quantities ended up in faeces as a result of grooming. Terrarium experiments showed that grooming exponentially diminished the pollen loads that they carried. The nectar of L. arenarium was found to be unusually viscous and to be presented in a novel location on the petal tips, where rodents could access it without destroying the flowers. Nectar was produced inside the perianth, but was translocated to the petal tips via capillary ducts. In common with many other rodent-pollinated plants, the flowers are presented at ground level, but when raised to higher positions seed production was not reduced, indicating that selection through female function does not drive the evolution of geoflory.

Conclusions

Despite the apparent cost of pollen lost to grooming, L. arenarium has evolved remarkable adaptations for rodent pollination and provides the first case of this pollination system in the genus.  相似文献   

12.

Background and Aims

Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.

Methods

Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.

Key Results

Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.

Conclusions

Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships.  相似文献   

13.

Background and Aims

Animal pollination is typically an uncertain process that interacts with self-incompatibility status to determine reproductive success. Seed set is often pollen-limited, but species with late-acting self-incompatibility (SI) may be particularly vulnerable, if self-pollen deposition results in ovule discounting. Pollination is examined and the occurrence of late-acting SI and ovule discounting assessed in Cyrtanthus breviflorus.

Methods

The pollination system was characterized by observing floral visitors and assessing nectar production and spectral reflectance of flowers. To assess late-acting SI and ovule discounting, growth of self- and cross-pollen tubes, and seed set following open pollination or hand pollination with varying proportions of self- and cross-pollen, were examined.

Key Results

Native honeybees Apis mellifera scutellata pollinated flowers as they actively collected pollen. Most flowers (≥70 %) did not contain nectar, while the rest produced minute volumes of dilute nectar. The flowers which are yellow to humans are visually conspicuous to bees with a strong contrast between UV-reflecting tepals and UV-absorbing anthers and pollen. Plants were self-incompatible, but self-rejection was late-acting and both self- and cross-pollen tubes penetrated ovules. Seed set of open-pollinated flowers was pollen-limited, despite pollen deposition exceeding ovule number by 6-fold. Open-pollinated seed set was similar to that of the cross + self-pollen treatment, but was less than that of the cross-pollen-only treatment.

Conclusions

Flowers of C. breviflorus are pollinated primarily by pollen-collecting bees and possess a late-acting SI system, previously unknown in this clade of the Amaryllidaceae. Pollinators of C. breviflorus deposit mixtures of cross- and self-pollen and, because SI is late-acting, self-pollen disables ovules, reducing female fertility. This study thus contributes to growing evidence that seed production in plants with late-acting SI systems is frequently limited by pollen quality, even when pollinators are abundant.  相似文献   

14.

Background and Aims

Insectivorous plants frequently display their flowers on the ends of long racemes. Conventional wisdom is that long racemes in insectivorous plants have evolved to provide spatial separation between flowers and traps, which consequently prevents pollinators from being captured. However, it is also possible that long racemes evolved for better seed dispersal or to make flowers more visible to pollinators.

Methods

Two sympatric insectivorous plants with identical pollinators were studied: Drosera cistiflora, with an upright growth form but a short raceme; and Drosera pauciflora, with a basal rosette of traps and a very long raceme. If long racemes evolved to protect their pollinators then D. cistiflora should capture more pollinators than D. pauciflora. However, if long racemes evolved to attract pollinators then taller flowers should receive more pollination visits than shorter flowers.

Key Results

Examination of D. pauciflora and D. cistiflora traps revealed that no pollinators were captured by either species, suggesting that long racemes did not evolve to protect pollinators from being captured. Experimental manipulations of flower height in D. cistiflora showed that experimentally shortened plants received significantly fewer pollination visits than plants which were taller in stature.

Conclusions

Long scapes in Drosera and non-insectivorous plants probably evolved due to similar selective pressures such as pollinator attraction.  相似文献   

15.

Background and Aims

Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact.

Methods

To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position.

Key Results

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity.

Conclusions

It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.  相似文献   

16.

Background and Aims

Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant''s reproductive success.

Methods

Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted.

Key Results

Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors.

Conclusions

The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success.  相似文献   

17.

Background and Aims

‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown.

Methods

Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis).

Key Results

Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent.

Conclusions

The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or motivated by an increased morning floral heat reward in tunnels facing the rising sun.  相似文献   

18.

Background and Aims

Flower morphology and inflorescence architecture affect pollinator foraging behaviour and thereby influence the process of pollination and the reproductive success of plants. This study explored possible ecological functions of the lever-like stamens and the floral design in Salvia cyclostegia.

Methods

Flower construction was experimentally manipulated by removing either the lower lever arms or the upper fertile thecae of the two stamens from a flower. The two types of manipulated individuals were intermixed with the control ones and randomly distributed in the population.

Key Results

Removing the sterile lower lever arms significantly reduced handling time per flower of the main pollinator, Bombus personatus. Interestingly, this manipulation did not increase the number of flowers probed per plant visit, but instead reduced it, i.e. shortened the visit sequence of the bumble-bees. Both loss of staminal lever function by removing lower lever arms and exclusion of self pollen by removing upper fertile thecae significantly reduced seed set per flower and seed set per plant. Both the manipulations interacted significantly with inflorescence size for the effect on female reproductive output.

Conclusions

Though the intact flowers demand a long handling time for pollinators, the reversible staminal lever is of advantage by promoting dispersal of pollen and thus the male function. The particular floral design in S. cyclostegia contributes to the floral constancy of B. personatus bumble-bees, with the lower lever arms acting as an optical cue for foraging cognition.  相似文献   

19.

Background and Aims

How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae).

Methods

Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses.

Key Results

Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes.

Conclusions

It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators.  相似文献   

20.

Background and Aims

To date, current research involving pollen viability has been evaluated in a relatively low number of orchid species. In the present study, we focused on five related Mediterranean orchid genera (Anacamptis, Orchis, Dactylorhiza, Ophrys and Serapias) that are characterized by different types of deceptive pollination.

Methods

The in vitro germination ability of increasingly aged pollinaria of eight food-, seven sexually and two shelter-deceptive species was evaluated. Pollination experiments on two food-, one sexually and one shelter-deceptive species were also performed and the percentage of embryonate seeds derived from the increasingly aged pollinaria was checked.

Key Results

All of the examined species showed long-term viabilities (=50 % pollen tube growth) that ranged from 8 to 35 d. Species with the same deceptive pollination strategies exhibited the same pollen viability trends. Interestingly, pollen viabilities of species groups with different deception types have shown significant differences, with sexually and shelter- deceptive species exhibiting a shorter life span than food-deceptive species.

Conclusions

This study confirms the prolonged germination and fertilization capacities of orchid pollinaria, and to our knowledge is the first report demonstrating a clear relationship between pollen viability and pollination system. It is proposed that this relationship is attributed to the different types of reproductive barriers, pre- or post-zygotic, that characterixe Ophrys and Serapias and the food-deceptive species, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号