首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Olate  R Anker  J E Allende 《FEBS letters》1985,185(1):170-176
Treatment of Xenopus laevis membranes with the 2',3'-dialdehyde of GTP (dial GTP) drastically inhibits their adenylyl cyclase activity. Optimal inhibition is obtained by treatment with 1 mM dial GTP for 1h at 32 degrees C. Using guanyl-5'-yl imidodiphosphate, F-, forskolin and Mn2+ as activators of the enzyme it can be concluded that dial GTP preferentially reacts with the stimulatory subunit (Ns) and slightly with the catalytic subunit. Dial GTP treatment greatly reduces the inhibition of adenylyl cyclase by progesterone. Pure exogenous Ns stimulates the enzyme but does not restore progesterone inhibition. Treatment with dial [alpha-32P]GTP labels several membrane proteins some of which have similar Mr to Ns and Ni.  相似文献   

2.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

3.
cyc- S49 cell membranes contain an adenylyl cyclase activity which is stimulated by forskolin and inhibited by guanine nucleotides and NaF. These inhibitory effects are mediated by an inhibitory guanine nucleotide-binding regulatory component (Ni) affecting the adenylyl cyclase catalytic unit (Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Nature (Lond.) 302, 706-709). Since cyc- S49 cells do not contain a stimulatory guanine nucleotide-binding regulatory component (Ns), these membranes were used to study the requirements and kinetics of activation of Ni in the absence of Ns. Activation of Ni by guanyl-5'-yl imidodiphosphate was time-dependent (i.e. hysteretic) and pseudo-irreversible. Although GTP and guanosine 5'-(beta-thio)diphosphate could prevent the inhibition caused by guanyl-5'-yl imidodiphosphate if added simultaneously with it, they could not reverse the inhibited state induced by previous exposure to guanyl-5'-yl imidodiphosphate. Activation of Ni had an absolute requirement for Mg2+. Unlike the activation of Ns, however, which requires millimolar concentrations of Mg2+ in the absence of hormonal stimulation, activation of Ni requires only micromolar concentrations of the divalent cation. These results support the contention that hormones which activate Ni or Ns do so by altering different parameters of a similar activation mechanism.  相似文献   

4.
The effects of the muscarinic cholinergic agonist methacholine on affinity of beta-adrenergic receptors for isoproterenol and on isoproterenol-induced stimulation of adenylate cyclase activity were assessed in canine myocardium. GTP and guanyl-5'-yl imidoiphosphate both decreased the affinity of beta-adrenergic receptors for isoproterenol without altering the affinity of these receptors for propranolol. Methacholine (10 nM to 10 micronM) antagonized the guanine nucleotide-induced reduction in beta-adrenergic receptor affinity for isoproterenol. This effect of methacholine was reversed by atropine. The choline ester had no effect on the affinity of beta-adrenergic receptors for isoproterenol in the absence of guanine nucleotides. Likewise, methacholine had no effect on the affinity of beta-adrenergic receptors for propranolol, either in the presence or absence of guanine nucleotides. Methacholine also attenuated GTP-induced activation of adenylate cyclase or isoproterenol-induced activation of the enzyme in the presence of GTP. The effects of methacholine on myocardial adenylate cyclase activity were apparent only in the presence of GTP. These effects were also reversed by atropine. The choline ester had no effect on adenylate cyclase activity in the presence of guanyl-5'-yl imidodiphosphate or NaF. The results of the present study suggest that muscarinic cholinergic agonists can regulate both beta-adrenergic receptors and adenylate cyclase by modulating the effects of GTP.  相似文献   

5.
Adenylate cyclase in particulate fractions from rat adrenal glands is subject to regulation by purine nucleotides, particularly guanine nucleotides. While GTP activates the enzyme, this effect is not evident in all particulate fractions. Following dialysis of the refractory fractions activation by GTP is observed, an indication that endogenous nucleotides may obscure the effects of added GTP. The analog, guanyl-5'-yl imidodiphosphate (Gpp(NH)p gives considerable more activity than does GTP. GDP, on the other hand, is inhibitory, an effect revealed only in the absence of a nucleotide-regenerating solution. GDP blocks the action of both GTP and Gpp(NH)p. These results show that the gamma-phosphate of the nucleotide is required for but need not be metabolized in the activation process. At low substrate concentration (0.1 mM ATP or adenyl-5'-yl imidodiphosphate) stimulation of the enzyme by ACTH occurs only in the presence of added guanine nucleotide (GTP or Gpp(NH)p); the hormone and nucleotide act synergistically. While both GTP and Gpp(NH)p inhibit fluoride-stimulated activity, the level of fluoride required to demonstrate such inhibition appears not to be related to the level of fluoride required for activation of the enzyme. In the presence of GTP, or GTP plus ACTH, the enzyme exhibits normal Michaelis-Menten kinetics with respect to substrate utilization (K-m equal to 0.16 mM). In the activated state, produced with ACTH plus GTP, the enzyme is less susceptible to inhibition by a species of ATP uncomplexed with Mg2+, but is more susceptible to inhibition by Mg2+. These results demonstrate that fundamental differences exist between different states of the adenylate cyclase. The difficulties in describing kinetically the regulation of adenylate cyclase systems in view of the multiple actions of nucleotides and magnesium are discussed.  相似文献   

6.
GTP and GTP analogs produced significant (up to 17-fold) and persistent activation of adenylate cyclase in lysates of Dictyostelium discoideum amoeba. The activation was enhanced 2- to 4-fold by cAMP (the agonist for receptor-mediated adenylate cyclase activation), was specific for guanine nucleoside triphosphates, and was inhibited by guanosine 5'-(O-2-thio)diphosphate. The order of potency of guanine nucleotides was guanosine 5'-(O-3-thio)triphosphate greater than guanyl-5'-yl imidodiphosphate greater than GTP; half-maximal activation was observed with 1-10 microM guanine nucleotide. Maximal activation occurred when the guanine nucleotide was added within seconds after cell lysis and the lysate was preincubated for 5 min prior to assay. Under these optimal in vitro conditions, the capacity of guanine nucleotides to activate decreased, closely correlating with adaptation or desensitization induced by exposure of intact cells to cAMP during a period of 10 min. These data strongly support that regulation of adenylate cyclase in Dictyostelium occurs via a receptor-linked GTP/GDP exchange protein. Two mutants, designated synag 7 and 49 were isolated in which cAMP and/or guanine nucleotides were not sufficient to activate adenylate cyclase. The wild-type pattern of guanine nucleotide regulation was restored to synag 7 lysates by the addition of a high-speed supernatant from wild-type cells. Characterization of these mutants demonstrates that activation of adenylate cyclase is not required for growth or cell-type specific differentiation but is essential for cellular aggregation and influences morphogenesis and pattern formation. This suggests that Dictyostelium may provide a model suitable for detailed genetic analysis of surface receptor-guanine nucleotide-binding regulatory protein linked adenylate cyclase systems and for determining the role of these systems in development.  相似文献   

7.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

8.
Guanine nucleotide-dependent modulation of agonist binding to the beta-receptor reflects coupling of the receptor to the nucleotide regulatory protein. Similarly, guanine nucleotide-dependent stimulation of adenylate cyclase can be used as an index of coupling between the regulatory protein and the catalytic unit of the cyclase. Using both approaches we have studied coupling in the beta-adrenergic receptor-adenylate cyclase system in rabbit liver during neonatal development. With [3H]dihydroalprenolol as ligand, the Bmax was relatively unchanged (200-300 fmol/mg of protein) between birth and end of day 1 and was similar to adult values. Guanyl-5'-yl imidodiphosphate-dependent shift in agonist (l-isoproterenol) competition curves was biphasic, decreasing from 10-fold in membranes isolated from animals at term to about 6-fold in membranes from 6-h-old neonates, and increasing progressively in older animals to a maximal measurable value of 42-fold in the adult. The ability of guanyl-5'-yl imidodiphosphate, GTP, GTP plus isoproterenol, NaF, or forskolin to activate adenylate cyclase was also biphasic and age-dependent. With Mn2+ the measured activity was not at any time greater than the activity at term. Pretreatment of membranes with cholera toxin resulted in differential levels of enhancement of adenylate cyclase activity wherein much lower enhancement was observed in membranes from neonatal animals. With [32P]NAD as substrate, cholera toxin-catalyzed ADP-ribosylation of membranes indicated development-dependent accumulation of Ns peptides. From these results we suggest that there is a decreased efficiency in the coupling of the beta-adrenergic receptor to hepatic adenylate cyclase in early neonatal life. The molecular basis for the biphasic nature of the coupling is presently unclear.  相似文献   

9.
(-)-Norepinephrine and other catecholamines inhibit basal and prostaglandin E1-stimulated adenylate cyclase activities by 35 to 60% in homogenates of NG108-15 neuroblastoma x gloma hybrid cells and markedly reduce adenosine 3'35:'-monophosphate levels of intact cells, but do not affect guanosine 3':5'-monophosphate levels. The specificity of the NG108-15 receptor for ligands is that of an alpha receptor, possibly a presynaptic alpha 2 receptor. The inhibition of adenylate cyclase by norepinephrine is reversed by alpha receptor antagonists such as dihydroergotamine or phentolamine, but not by the beta receptor antagonist propranolol. The effect of norepinephrine on adenylate cyclase activity initially is dependent on GTP; half-maximal inhibition of enzyme activity by norepinephrine is obtained with 0.2 micron GTP. The inhibition of adenylate cyclase activity by norepinephrine is reduced by 10 mM NaF and is abolished by 0.05 mM guanyl-5'-yl imidodiphosphate. Inhibitions of NG108-15 adenylate cyclase mediated by alpha receptors, opiate receptors, and muscarinic acetylcholine receptors are not additive; this suggests that the three species of receptors can be functionally coupled to the same adenylate cyclase molecules or molecules regulating the enzyme.  相似文献   

10.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

11.
Adenylate cyclase activity associated to wild type Neurospora membranes is highly dependent on Mn2+ and insensitive to fluoride, guanyl nucleotides, and cholera toxin. These membranes are able to interact with components of detergent extracts from turkey erythrocyte ghosts. The reconstituted cyclase system is catalytically active in the presence of Mg2+ and it is activated by guanyl-5'-yl imidodiphosphate plus isoproterenol and fluoride. When detergent extracts were prepared from avian erythrocyte membranes treated with cholera toxin, the reconstituted system was stimulated by guanyl-5'-yl imidodiphosphate in the absence of isoproterenol and cyclase activities were higher than those observed with extracts from membranes not treated with the toxin. Dose-response curves for isoproterenol and fluoride in the reconstituted system were similar to those reported for avian erythrocyte and liver membranes, respectively.  相似文献   

12.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

13.
Abstract: Cholinergic synaptosomes isolated from the electric organ of Torpedo contain membrane-bound adenylate cyclase activity (∼6 pmol/mg proteidmin), which is dependent on the presence of guanine nucleotides. The activity is strongly dependent on temperature and only slightly affected by NaCl. The Torpedo adenylate cyclase is completely inhibited by low levels of free Ca2+ (K0∼ 0.5 μ M ). This effect is not altered by either trifluoperazine or addition of exogenous calmodulin. Ca3+ has no effect on the activation step of the adenylate cyclase by guanyl-5'-yl imidodiphosphate (GppNHp), and Mn2+ abolishes the Ca2+-dependent inhibition of cyclic AMP synthesis. These findings suggest that Ca2+ exerts its effect by direct interaction with a site located on the catalytic subunit. Torpedo synaptosomes contain presynaptic inhibitory muscarinic receptors. The binding of muscarinic agonists to the receptors is modulated (to lower affinity) by GTP. However, muscarinic ligands, examined under a variety of assay conditions, have no effect on adenylate cyclase activity. These results suggest that although both the muscarinic receptor and the adenylate cyclase are coupled to G proteins, they either interact with different G proteins or are situated in different regions of the presynaptic membrane.  相似文献   

14.
In Xenopus laevis oocytes progesterone is able to inhibit directly the plasma membrane adenylate cyclase activity and induce reinitiation of meiotic maturation. To determine whether progesterone inhibition is mediated by the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, Ni, the effect of the Bordetella pertussis toxin (IAP) and limited proteolysis on progesterone action in oocytes was investigated. Treatment of oocyte membranes with islet activating protein (IAP) in the presence of [32P]NAD led to incorporation of radiolabel into a 41 000-dalton membrane protein. However, exposure of isolated oocytes to 100 ng/ml IAP for up to 24 h, or oocyte membranes with concentrations of toxin as high as 100 micrograms/ml, had no effect on either progesterone inhibition of adenylate cyclase or induction of maturation. Similarly, limited alpha-chymotrypsin proteolysis of oocyte membranes failed to modify progesterone-induced inhibition of adenylate cyclase. In contrast, inhibition of human platelet adenylate cyclase by epinephrine, acting via a GTP-dependent, alpha 2-adrenergic receptor-mediated pathway, is almost completely abolished by both IAP treatment and limited proteolysis of platelet membranes. These data indicate that unlike attenuation of platelet enzyme activity, the inhibition of adenylate cyclase in oocyte membranes by progesterone does not occur via a classical Ni-mediated pathway.  相似文献   

15.
In rat adrenal membrane, vanadyl sulfate, but not vanadate, inhibits the nonhydrolyzable GTP analogs-, forskolin- and NaF-stimulated activation process of adenylate cyclase. In these reactions, the half-maximum concentration of vanadyl for inhibition was approx. 0.3 mM. The binding of [3H]guanyl-5'-yl imidodiphosphate to the membrane (Kd = 2 microM) was not affected by vanadyl sulfate under the conditions in which the vanadyl sulfate inhibits the activation process. Also, the binding of ACTH to its receptor was inhibited by neither vanadyl sulfate nor vanadate, and the catalytic unit of adenylate cyclase appears to be unaffected by vanadyl sulfate. When the activation by nonhydrolyzable GTP analog was enhanced by Ca2+, vanadyl sulfate strongly inhibited the activation of adenylate cyclase.  相似文献   

16.
Effects of glucagon and guanyl nucleotides on the rat liver plasma membrane adenylyl cyclase were studied. It was established that: 1) glucagon stimulates the fully guanyl-5'-yl imidodiphosphate (GMP-P(NH)P)-activated enzyme between 20 and 70%, provided a guanyl nucleotide is present in the assay; 2) glucagon has no effect on adenylyl cyclase activity in membranes activated fully by GMP-P(NH)P and then washed free of nucleotides. It is concluded that occupancy of the guanyl nucleotide binding site that activates the catalytic moiety of the system is not sufficient to promote hormone-receptor coupling to adenylyl cyclase and that occupancy of a second site by guanyl nucleotides is essential to effect stimulation of adenylyl cyclase by the glucagon-receptor complex. The data presented raise the question whether the guanyl nucleotide site that promotes coupling is distinct from the guanyl nucleotide site that modulates binding of glucagon to receptor and whether the occupancy of the guanyl nucleotide site associated with the catalytic moiety is necessary for coupling.  相似文献   

17.
1. GTP and GMP-P(NH)P (guanyl-5'-yl imidodiphosphate) were observed to increase the stimulation of neural adenylate cyclase by dopamine (3,4-dihydroxyphenethylamine) and noradrenaline. 2. GMP-P(NH)P had a biphasic effect on the enzyme activity. 3. Preincubation of membranes with GMP-P(NH)P activated the enzyme by a process dependent on time and temperature. Catecholamines increased the speed and the extent of this activation. 4. Membrane fractions contained high- and low-affinity sites for GMP-P(NH)P binding: this binding was due to protein(s) of the membrane preparations. 5. Low-affinity-site binding of GMP-P(NH)P appeared to be related to the stimulatory effect on the adenylate cyclase activity.  相似文献   

18.
Adenylate cyclase in liver membranes was solubilized with Lubrol PX and partially purified by gel filtration. The partially purified enzyme was susceptible to activation by guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Studies on the binding of [3H]Gpp(NH)p to various fractions eluted from the gels revealed that an upper limit of 1% of the Gpp(NH)p binding sites is associated with adenylate cyclase activity stimulated by the nucleotide. The glucagon receptor, pretagged with 125I-glucagon in the membranes, solubilized with Lubrol PX, and fractionated on the same gel columns, eluted in a peak fraction that overlaps with, but is separate from, adenylate cyclase in its Gpp(NH)p-stimulated form. Addition of GTP to the solubilized glucagon-receptor complex caused complete dissociation of the complex, as has been shown with the membrane-bound form of the complex. Since the GTP-sensitive form of the glucagon receptor complex separates from the Gpp(NH)p-sensitive form of adenylate cyclase, it is concluded that the receptor and the enzyme are separate molecules, each associated with a distinct nucleotide regulatory site or component. These findings are discussed in terms of the possible structure of the hormone-sensitive state of adenylate cyclase.  相似文献   

19.
Steroidogenesis by Y-1 adrenal tumor cells in culture is stimulated by ATP, adenyl-5'-yl imidodiphosphate (App(NH)), adenosine 5'(beta, alpha-methylene)triphosphate (App(CH2)p), ADP, AMP, NAD, FAD, and adenosine but not by adenine or other nucleoside triphosphates. ATP, App(NH)p, App(CH2)p, and adenosine are active in the micromolar range. Like adrenocorticotropic hormone (ACTH), the onset of stimulation is immediate and occurs to the same extent. Also active are 2'- and 5'-deoxyadenosine and 2-chloroadenosine whereas adenine xyloside, L-riboside, or arabinoside have very low activity. Stimulation is accompanied by rounding of the cells. Dipyridamole, an inhibitor of adenosine transport, increased the response to low concentrations of adenosine, suggesting that adenosine acts externally. Stimulation of steroidogenesis by adenosine or phosphorylated adenosine compounds fails to occur in the presence of crystalline adenosine deaminase, and the effect of the enzyme on adenosine, ATP, or NAD stimulation is reversed by the competitive inhibitor erythro-9-[3-(nonane-2-ol)]adenine. This suggests that the enzyme acts specifically on adenosine and a requirement for the conversion of the above compounds to adenosine seems probable. The inhibition of cAMP effects by adenosine deaminase suggests that some of its effects are also mediated by conversion to adenosine. Similar stimulation is seen in I-10 Leydig tumor cells, but an ACTH-resistant mutant of Y-1 cells, called OS-3, is relatively resistant to adenosine. Adenosine and 2-chloroadenosine stimulate adenylate cyclase in membranes from Y-1 and I-10 cells at concentrations slightly greater than are effective for steroidogenesis. Other nucleosides are ineffective. Like the NH2-terminal 24 residues of adrenocorticotropic hormone (1-24 ACTH), the adenosine effect in Y-1 membranes is rapid and is on the Vmax intercept (versus ATP) and not on the Km. In contrast to steroidogenesis, adenosine is only a partial agonist for adenylate cyclase. It effect occurs in the presence of ITP, GTP, or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). Theophylline inhibits adenosine-stimulated steroidogenesis. Inhibition of adenylate cyclase occurs in the same concentration range but is of the mixed type.  相似文献   

20.
Atria isolated from 4-day chick embryos were much less responsive to the negative chronotropic effect of muscarinic agonists than were atria from 5- or 8-day embryos, even though the density of muscarinic acetylcholine receptors (mAChR) was similar at all these ages. The mAChR in hearts from 4-day embryos were also significantly less susceptible to regulation of receptor number by in vivo agonist treatment and required a 2-5-fold greater dose of the muscarinic agonist carbachol to achieve a decrease in receptor number equivalent to that observed in 5- or 8-day embryonic hearts. When 4-day atrial membranes were assayed in physiological buffers, agonist binding to the mAChR was not regulated by GTP unless a sulfhydryl reducing agent was present. Receptors from 5- and 8-day embryos did not require addition of a sulfhydryl reducing agent in order to see guanine nucleotide effects on agonist binding. Even in the presence of a sulfhydryl reducing agent, carbachol binding to the mAChR in 4-day membranes was much less sensitive to guanyl-5'-yl imidodiphosphate (GppNHp) than binding to mAChR in 5- or 8-day membranes. In addition, forskolin-activated adenylate cyclase activity was much less sensitive to inhibition by GppNHp in membranes from 4-day atria than from 5- and 8-day atria. The GTP-binding component (NI) which couples the mAChR to inhibition of adenylate cyclase activity was examined by covalent modification with pertussis toxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号