首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.  相似文献   

2.
Botulinum neurotoxin (NT) is synthesized by Clostridium botulinum as about a 150-kDa single-chain polypeptide. Posttranslational modification by bacterial or exogenous proteases yielded dichain structure which formed a disulfide loop connecting a 50-kDa light chain (Lc) and 100-kDa heavy chain (Hc). We determined amino acid sequences around cleavage sites in the loop region of botulinum NTs produced by type C strain Stockholm, type D strain CB16, and type F strain Oslo by analysis of the C-terminal sequence of Lc and the N-terminal sequence of Hc. Cleavage was found at one or two sites at Arg444/Ser445 and Lys449/Thr450 for type C, and Lys442/Asn443 and Arg445/Asp446 for type D, respectively. In culture fluid of mildly proteolytic strains of type C and D, therefore, NT exists as a mixture of at least three forms of nicked dichain molecules. The NT of type F proteolytic strain Oslo showed the Arg435 as a C-terminal residue of Lc and Ala440 as an N-terminal residue of Hc, indicating that the bacterial protease cuts twice (Arg435/Lys436 and Lys439/Ala440), with excision of four amino acid residues. The location of cleavage and number of amino acid residue excisions in the loop region could be explained by the degree of exposure of amino acid residues on the surface of the molecule, which was predicted as surface probability from the amino acid sequence. In addition, the observed correlation may also be adapted to the cleavage sites of the other botulinum toxin types, A, B, E, and G.  相似文献   

3.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

4.
The nontoxic-nonhemagglutinin (NTNHA) component, in both isolated form and the neurotoxin (NT)/NTNHA complexed form, was prepared protease-free from toxin complexes produced by Clostridium botulinum type D strain 4947. NTNHA in both preparations was found to be spontaneously converted to the nicked NTNHA form leading to 15- and 115-kDa fragments with the excision of several amino acid residues at specific sites on SDS-PAGE during long-term incubation, while that of the NT/NTNHA/hemagglutinin complexed form remained unnicked single-chain polypeptides under the same conditions. Considering that the NTNHA preparation contained small amounts of the nicked form of NTNHA and the addition of trypsin accelerated the cleavage, it is speculated that a nicked form of NTNHA remaining after the purification and/or NTNHA itself catalyzes the cleavage of intact NTNHA.  相似文献   

5.
Clostridium botulinum produces botulinum neurotoxin (BoNT) as a large toxin complex associated with nontoxic-nonhemagglutinin (NTNHA) and/or hemagglutinin components. In the present study, high-level expression of full-length (1197 amino acids) rNTNHA from C. botulinum serotype D strain 4947 (D-4947) was achieved in an Escherichia coli system. Spontaneous nicking of the rNTNHA at a specific site was observed during long-term incubation in the presence of protease inhibitors; this was also observed in natural NTNHA. The rNTNHA assembled with isolated D-4947 BoNT with molar ratio 1:1 to form a toxin complex. The reconstituted toxin complex exhibited dramatic resistance to proteolysis by pepsin or trypsin at high concentrations, despite the fact that the isolated BoNT and rNTNHA proteins were both easily degraded. We provide definitive evidence that NTNHA plays a crucial role in protecting BoNT, which is an oral toxin, from digestion by proteases common in the stomach and intestine.  相似文献   

6.
Localization of the calmodulin- and the actin-binding sites of caldesmon   总被引:11,自引:0,他引:11  
Expression of the C-terminal third of chicken gizzard caldesmon in Escherichia coli, using the Nagai vector (Nagai, K., and Th?gersen, H.V. (1987) Methods Enzmol. 153, 461-481), produces a cII-caldesmon fusion protein (27 kDa) with caldesmon sequence beginning at Lys579. Degradation during purification yields five peptides with molecular masses of 24, 22, 19 (two peptides), and 15 kDa. The 24-kDa peptide begins at Phe581; the 22-kDa peptide begins at Leu597, the two 19-kDa peptides begin at Phe581 and Val629, respectively; the 15-kDa peptide also begins at Val629. We estimate that the 15-kDa and one of the 19-kDa peptides end near Leu710. Site-directed mutagenesis was used to produce truncated peptides with known C termini; one peptide (17 kDa) terminates at Asn675. Digestion of the fragments with chymotrypsin generates a second 15-kDa fragment that begins at Ser666 (15K'). All of the peptides, with the exception of 15K', bind Ca(2+)-calmodulin-Sepharose and share a common 37-amino acid peptide between Val629 and Ser666, suggesting this contains the calmodulin binding site. Comparison with published sequences (Takagi, T., Yazawa, M., Ueno, T., Suzuki, S., and Yagi, K. (1989) J. Biochem. (Tokyo) 106, 778-783 and Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) for other calmodulin-binding fragments further restricts the binding site to 7 residues, Trp-Glu-Lys-Gly-Asn-Val-Phe, between Trp659 and Ser666. All of the fragments, except the two 15-kDa peptides, co-sediment with F-actin, indicating that there are two segments in the C-terminal third of caldesmon that can interact with F-actin: one between Leu597 and Val629, the other between Arg711 and Pro756. Although separated in the primary sequence, these domains may interact with the calmodulin-binding region in the folded structure.  相似文献   

7.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

8.
Sea anemones are rich in biologically active polypeptides such as toxins and protease inhibitors. These polypeptides have so far been isolated from whole bodies, tentacles or secreted mucus. Recently, two novel peptide toxins with crab lethality have been isolated from acrorhagi (specialized aggressive organs elaborated by only certain species of sea anemones belonging to the family Actiniidae) of Actinia equina. This prompted us to survey biologically active polypeptides in the acrorhagi of two species of sea anemones, Anthopleura aff. xanthogrammica and Anthopleura fuscoviridis. No potent crab lethality was displayed by the acrorhagial extracts of both species. However, significantly high protease inhibitory activity was instead detected in the acrorhagial extracts of the two species and also in that of A. equina. From the acrorhagi of A. equina, A. aff. xanthogrammica and A. fuscoviridis, one (AEAPI), one (AXAPI) and two (AFAPI-I and AFAPI-III) protease inhibitors were isolated, respectively. The complete amino acid sequences of the four inhibitors were elucidated by N-terminal sequencing and sequencing of the C-terminal peptide fragment produced upon asparaginylendopeptidase digestion. The determined amino acid sequences revealed that all the four inhibitors are new members of the Kunitz-type protease inhibitor family.  相似文献   

9.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

10.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

11.
Botulinum neurotoxin (NT) serotype B, produced by Clostridium botulinum (proteolytic strain), is a 150-kDa single-chain polypeptide of 1291 amino acids, of which 10 are Cys residues [Whelan et al. (1992), Appl. Environ. Microbiol. 58, 2345–2354] The posttranslational modifications of the gene product were found to consist of excision of only the initiating Met residue, limited proteolysis (nicking) of the 1290-residue-long protein between Lys 440 and Ala 441, and formation of at least one disulflde bridge. The dichain (nicked) protein, in a mixture with the precursor single-chain (unnicked) molecules, was found to have a 50-kDa light chain (Pro 1 through Lys 440) and a 100-kDa heavy chain (Ala 441 through Glu 1290). The limited in vivo nicking of the single-chain NT to the dichain form, by protease endogenous to the bacteria, and the nonfacile in vitro cleavage by trypsin of the Lys 440–Ala 441 bond appear to be due to the adjacent Ala 441–Pro 442 imide bond's probable cis configuration in a mixed population of molecules with cis and trans configurations. The two chains were found connected by an interchain disulfide formed by Cys 436 and Cys 445. Six other Cys residues, at positions 70, 195, 308, 777, 954, and 1277, were found in sulfhydryl form. In addition, a Cys at position 1220 or 1257 appeared to be in sulfhydryl form, hence our experimental results could not unambiguously identify presence of an intrachain disulfide bridge near the C-terminus of the NT. A total of 384 amino acid residues, including the 6 Cys residues at positions 70, 195, 308, 436, 445, and 1277, were identified by direct protein-chemical analysis; thus 29.7% of the protein's entire amino acid sequence predicted from the nucleotide sequence was confirmed. The 6 amino acids, residues 945–950, did not match with the sequence predicted in 1992, but did match with a later report of 1995. The above determinations were made by a combination of chemical (CNBr and acidic cleavage at Asp–Pro) and enzymatic (trypsin, clostripain, and pepsin) cleavages of the NT, and NT carboxymethylated with iodoacetamide (with or without 14C label), separation and isolation of the fragments by SDS–PAGE (followed by electroblotting onto PVDF membrane), and/or reversed-phase HPLC, and analyses of the fragments for the N-terminal amino acid sequences by Edman degradation and amino acid compositions.  相似文献   

12.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

13.
Botulinum neurotoxin Type A is synthesized byClostridium botulinum as a 150 kD single chain polypeptide. The posttranslational processing of the 1296 amino acid residue long gene product involves removal of the initiating methionine, formation of disulfide bridges, and limited proteolysis (nicking) by the bacterial protease(s). The mature dichain neurotoxin is made of a 50-kD light chain and a 100-kD heavy chain connected by a disulfide bridge. DNA derived amino acid sequencepredicted a total of 9 Cys residues (Binzet al., 1990,J. Biol. Chem. 265, 9153–9158; Thompsonet al., 1990,Eur. J. Biochem. 189, 73–81). Treatment of the dichain neurotoxin, dissolved in 6 M guanidine. HCl, with 4-vinylpyridine converted 5 Cys residues into S-pyridylethyl cysteine residues; but alkylation after mercaptolysis converted all 9 Cys residues in the S-pyridylethylated form. After confirming the predicted number of Cys residues by amino acid analysis, the positions of the 5 Cys residues carrying sulfhydryl groups and the 4 involved in disulfide bridges were determined by comparing the elution patterns in reversed-phase HPLC of the cyanogen bromide mixtures of the exclusively alkylated and the mercaptolyzed-alkylated neurotoxin. The chromatographically isolated components were identified by N-terminal amino acid sequence analysis. The HPLC patterns showed characteristic differences. The Cys residuespredicted in positions 133, 164, 790, 966, and 1059 were found in the sulfhydryl form; Cys 429 and 453 were found disulfide-bridged connecting the light and heavy chains, and Cys 1234 and 1279 were found in an intrachain disulfide-bridge near the C-terminus in the heavy chain. Ten amino acid residues, Thr 438-Lys 447,predicted to be present in the single chain neurotoxin were not found in the dichain neurotoxin. Nicking of single-chain neurotoxin by the protease(s) endogenous to the bacteria therefore appears to excise these 10 amino acid residues from the nicking region which leaves Lys 437 as the C-terminus of the light chain and Ala 448 as the N-terminus of the heavy chain. The N-terminal Pro 1 and C-terminal Leu 1295,predicted from the nucleotide sequence, remain conserved after nicking. Residues Pro 1-Lys 437 and Ala 448-Leu 1295 constitute the light and heavy chains, respectively. The C-termini were determined by isolation of short C-terminal peptide fragments and subsequent sequence analysis by Edman degradation. About 20% of the amino acid sequence predicted from DNA analysis was confirmed in these studies by protein-chemical methods.  相似文献   

14.
Botulinum neurotoxin (NT) serotype A is a ~150-kDa dichain protein. Posttranslational nicking of the single-chain NT (residues Pro 1–Leu 1295) by the protease(s) endogenous to Clostridium botulinum excises 10 residues, leaving Pro 1–Lys 437 and Ala 448–Leu 1295 in the ~50-kDa light (L) and ~100-kDa heavy (H) chains, respectively, connected by a Cys 429–Cys 453 disulfide and noncovalent bonds [Krieglstein et al. (1994), J. Protein Chem. 13, 49–57]. The L chain is a metalloprotease, while the amino- and carboxy-terminal halves of the H chain have channel-forming and receptor-binding activities, respectively [Montecucco and Schiavo (1995), Q. Rev. Biophys. 28, 423–472]. Endoproteinase Glu-C and α-chymotrypsin were used for controlled digestion at pH 7.4 of the ~150-kDa dichain NT and the isolated ~100-kDa H chain (i.e., freed from the L chain) in order to map the cleavage sites and isolate the proteolytic fragments. The dichain NT appeared more resistant to cleavage by endoproteinase Glu-C than the isolated H chain. In contrast, the NT with its disulfide(s) reduced showed rapid digestion of both chains, including a cleavage between Glu 251 and Met 252 (resulting in ~30- and ~20-kDa fragments of the L chain) which was not noted unless the NT was reduced. Interestingly, an adjacent bond, Tyr 249–Tyr 250, was noted earlier [DasGupta and Foley (1989), Biochimie 71, 1193–1200] to undergo “self-cleavage” following reductive separation of the L chain from the H chain. The site Tyr–Tyr–Glu–Met (residues 249–252) appears to become exposed following reduction of Cys 429–Cys 453 disulfide. Identification of Glu 669–Ile 670 and Tyr 683–Ile 684 as protease-susceptible sites demonstrated for the first time that at least two peptide bonds in the segment of the H chain (residues 659–684), part of which (residues 659–681) is thought to interact with the endosomal membranes and forms channels [Oblatt-Montal et al., (1995), Protein Sci. 4, 1490–1497], are exposed on the surface of the NT. Two of the fragments of the H chain we generated and purified by chromatography are suitable for structure–function studies; the ~85- and ~45-kDa fragments beginning at residue Leu 544 and Ser 884, respectively (both extend presumably to Leu 1295) contain the channel-forming segment and receptor-binding segments, respectively. In determining partial amino acid sequences of 10 fragments, a total of 149 amino acids in the 1275-residue NT were chemically identified.  相似文献   

15.
Seven depsipeptides were synthesized by appending seven amino acids (Lys, Leu, Val, Phe, Ser, Gln, and Pro) at the N-terminus of the active fragment [TE-(33-43)], respectively corresponding to the C-terminal beta sheet domain of tenecin 1, an antibacterial protein and their activities were measured against Staphylococcus aureus. Considering the relationship between the activity and the characteristic of amino acid at the N-terminal of the peptide, novel derivatives were designed and synthesized from TE-(33-43) by introduction of fatty acids at the N-terminal. In this process, we synthesized novel lipid-peptide hybrid compounds with a potent antibacterial activity and more improved bioavailabilities. We characterized the important structural parameters of the lipid-peptide hybrid compounds for the antibacterial activities.  相似文献   

16.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when 125I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

17.
The role of protease produced by a heterotrophic bacterium during growth was investigated with Aeromonas salmonicida, the pathogen of fish furunculosis, strain A-7301 and its protease-deficient mutant NTG-1 induced by mutagenesis. Strain A-7301 produced extracellular protease in a mixed amino acid medium (composed of Gly, Ala, Val, Ile, Leu, Thr, Ser, Cys, Met, Phe, Tyr, Lys, Arg, Pro, His, Try, Asp, Asn, Glu, and Gln at equal concentrations of 0.1 g/liter). Its multiplication rate was limited by the amounts of amino acids present, whereas strain NTG-1 showed no protease production despite considerable growth similar to that of A-7301. There was no difference between A-7301 and NTG-1 in amino acid requirements for growth, and seven amino acids (Gly, Ala, Val, Thr, Cys, Met, and His) were found to be indispensable. A defined level of the mixed amino acids (0.4 to 0.5 g/liter) was needed for A-7301 to initiate a large production of protease. Neither of the strains grew well in a casein medium, to which no amino acids were added. However, when a protease fraction obtained from extracellular products of A-7301 by DEAE-cellulose column chromatography was added, NTG-1 successfully reproduced in the casein medium. These results indicate that the extracellular protease plays an important role in supplying A. salmonicida cells with available amino acids as nutrients and that higher growth is closely associated with protease production which stimulates further reproduction.  相似文献   

18.
We report novel findings of significant amounts of 60- and 10-kDa proteins on SDS-PAGE in a culture supernatant of the Clostridium botulinum type D strain 4947 (D-4947). The N-terminal amino acid sequences of the purified proteins were closely related to those of other bacterial GroEL and GroES proteins, and both positively cross-reacted with Escherichia coli GroEL and GroES antibodies. Native GroEL homologue as an oligomeric complex is a weak ATPase whose activity is inhibited by the presence of GroES homologue. The 2634-bp groESL operon of D-4947 was isolated by PCR and sequenced. The sequence included two complete open reading frames (282 and 1629 bp), which were homologous to the groES and groEL gene family of bacterial proteins. Southern and Northern blot analyses indicate that the groESL operon is encoded on the genomic DNA of D-4947 as a single copy, and not on that of its specific toxin-converting phage.  相似文献   

19.
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.  相似文献   

20.
《Process Biochemistry》2014,49(1):61-68
Cloning, over-expression, characterization and structural and functional analysis of two alkaline proteases from the newly isolated haloalkaliphilic bacteria: Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12 were carried out. The cloned protease genes were over-expressed in Escherichia coli within 6 h of the IPTG induction. The protease genes were sequenced and the sequence submitted to the GenBank with the accession numbers, HM219179 and HM219182. The recombinant proteases were active in the range of pH 8–11 and temperature 30–50 °C. The amino acid sequences of the alkaline proteases displayed hydrophobic character and stable configurations. The amino acids Asp 141, His 171 and Ser 324 formed the catalytic triad, while Ile, Leu and Ser were other amino acid moieties present in the active site. The characteristics of the recombinant proteases were compared and found to be similar to their native counterparts. On the basis of the in-silico analysis and inhibitor studies, the enzymes were confirmed as serine proteases. The study hold significance as only limited enzymes from the haloalkaliphilic bacteria have been cloned, sequenced and analyzed for the structure and function analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号