首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid hydroperoxide (LOOH)-dependent lipid peroxidation was induced in alpha-linolenic acid (LNA)-loaded hepatocytes by adding Fe, Cu, V, or Cd ions at concentrations from 20 to 500 microM. The effects of structurally related flavonoids at concentrations from 10 to 500 microM on the lipid peroxidation were examined. The results with regard to each flavonoid subclass are as follows: (i) Flavonols such as myricetin, quercetin, fisetin, and kaempferol, but not morin, showed dose-dependent antioxidative activity against metal-induced lipid peroxidation at all metal concentrations. Myricetin, quercetin, and fisetin were the most effective antioxidants, although their efficacies depended on the metal ion. Kaempferol and morin had antioxidative activity equal to the other flavonols in the presence of Cu ions, but were much less effective for the other three metal ions. (ii) Flavones, luteolin, apigenin, and chrysin were antioxidative at low Fe concentrations, but were pro-oxidative at high Fe concentrations. Luteolin exhibited antioxidative activity similar to that of catechol-containing flavonols in the presence of the other three metal ions. Apigenin and chrysin also acted as pro-oxidants with V or with all metal ions, respectively. (iii) Taxifolin, a flavanone, also showed both anti- and prooxidative activity, depending on Fe concentrations, but with other metal showed only antioxidative activity ions. (iv) Epigallocatechin, a flavanol, was antioxidative with all metal ions, and its activity was similar to that of catechol-containing flavonols. The various effects of flavonoids on metal-induced lipid peroxidation in LNA-loaded hepatocytes is discussed with regard to the change in redox potential of flavonoid-metal complexes.  相似文献   

2.
The in vitro effects of several flavonoids on nonenzymatic lipid peroxidation in the rat brain mitochondria was studied. The lipid peroxidation was indexed by measuring the MDA production using the 2-thiobarbituric acid TBA test. The flavonoids, apigenin, flavone, flavanone, hesperidin, naringin, and tangeretin promoted the ascorbic acid-induced lipid peroxidation, the extent of which depended upon the concentration of the flavonoid and ascorbic acid. The other flavonoids studied, viz., quercetin, quercetrin, rutin, taxifolin, myricetin, myricetrin, phloretin, phloridzin, diosmetin, diosmin, apiin, hesperetin, naringenin, (+)-catechin, morin, fisetin, chrysin, and 3-hydroxyflavone, all showed varying extents of inhibition of the nonenzymatic lipid peroxidation, induced by either ascorbic acid or ferrous sulfate. The flavonoid aglycones were more potent in their antiperoxidative action than their corresponding glycosides. Structure-activity analysis revealed that the flavonoid molecule with polyhydroxylated substitutions on rings A and B, a 2,3-double bond, a free 3-hydroxyl substitution and a 4-keto moiety, would confer upon the compound potent antiperoxidative properties.  相似文献   

3.
The plant flavonoids quercetin (3,5,7,3',4'-pentahydroxyflavone), morin (3,5,7,2',4'-pentahydroxyflavone), kaempferol (3,5,7,4'-tetrahydroxyflavone), chrysin (5,7-dihydroxyflavone), fisetin (3,7,3',4'-tetrahydroxyflavone), myricetin (3,5,7,3',4',5'-hexahydroxyflavone), myricitrin (myricetin-3-rhamnoside), hesperetin (3',5,7-trihydroxy-4'-methoxyflavanone), quercitrin (quercetin-3-L-rhamnoside), rutin (quercetin-3-rhamnosylglucoside or quercetin-3-rutinoside), and hesperidin (hesperetin-7-rutinoside) have been assayed for mutagenicity in the Salmonella/microsomal activation system. Quercetin, morin, kaempferol, fisetin, myricetin, quercitrin and rutin were mutagenic in the histidine reversion system with the frameshift strain TA98. The flavonols quercetin and myricetin are mutagenic without metabolic activation, although more effective when a rat liver microsomal preparation (S-9) is included; all others require metabolic activation. Flavonoids are common constituents of higher plants, with extensive medical uses. In addition to pure compounds, we have examined crude extracts of tobacco (snuff) and extracts from commonly available nutritional supplements containing rutin. Mutagenic activity can be detected and is correlated with the flavonoid content.  相似文献   

4.
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion–ascorbate combinations was investigated in aerated and incubated emulsions at 37 °C and pH 7. LA peroxidation induced by copper(II)–ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin > catechin ≥ quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33 V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)–Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure–activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.  相似文献   

5.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones, and then forms brown or black pigments. In the present study, the effects of some flavonoids on the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) have been studied. The results show that flavonoids can lead to reversible inhibition of the enzyme. A kinetic analysis showed that the flavonols are competitive inhibitors, whereas luteolin is an uncompetitive inhibitor. The rank order of inhibition was: quercetin > galangin > morin; fisetin > 3,7,4"-trihydroxyflavone; luteolin > apigenin > chrysin.  相似文献   

6.
Flavonoids as superoxide scavengers and antioxidants   总被引:26,自引:1,他引:25  
The superoxide anions scavenging activity and antioxidation of seven flavonoids--quercetin, rutin, morin, acacetin, hispidulin, hesperidin, and naringin--were studied. The superoxide anions were generated in a phenazin methosulphate-NADH system and were assayed by reduction of nitroblue tetrazolium. The scavenging activity ranked: rutin was the strongest, and quercetin and naringin the second, while morin and hispidulin were very weak. The concentration values yielding 50% inhibition of lipid peroxidation in mouse liver homogenate were in order of 10(-6) M for quercetin, rutin, and morin; and of 10(-5) M for acacetin and hispidulin, while naringin and hesperidin had no antioxidative action. In comparison with the antioxidative and scavenging activities of flavonoids, there are no correlations.  相似文献   

7.
The pro-oxidative properties of the four flavonoids, quercetin, morin, naringenin and hesperetin, in human lymphocyte system were investigated. Naringenin and hesperetin accelerated the oxidation of deoxyribose induced by Fe(3+)/H(2)O(2) in a concentration range of 0-200 microM, but quercetin and morin decreased it when the concentration was greater than 100 microM. The generation of hydrogen peroxide and the superoxide anion and the production of TBARS in lymphocytes were increased with increasing concentration of a flavonoid. Cell membrane protein thiols of the lymphocytes decreased when treated with the four flavonoids. Quercetin and hesperetin had no significant effect (p>0.05) on the activity of glutathione reductase, but morin and naringenin could inhibit the activity of the enzyme at a concentration of 200 microM, when compared to the control group. The glutathione S-transferase activity was slightly decreased by treatment with each of the four flavonoids only at a concentration of 200 microM. Therefore, the DNA damage in lymphocytes induced by the flavonoids in the model system might have been due to their stimulation of oxidative stress in the lymphocytes, which resulted in the decrease of cell membrane protein thiols, increase of lipid peroxidation in cell membrane and in the influence of the antioxidative enzyme activities.  相似文献   

8.
Using a plate induction assay, we demonstrate that alfalfa exudes inducer of Rhizobium meliloti nodulation genes. The inducer is exuded from the infectible zone of the root, accumulates to at least 1 micromolar, and is not affected by 10 millimolar nitrate. No zones of inhibition are observed. A nodulation minus mutant line of alfalfa, MN-1008, exudes normal levels of inducer. R. meliloti grown in rich medium requires ten-fold higher concentrations of luteolin to achieve half-maximal induction as compared to cells grown in a minimal medium. Flavonoids other than luteolin are found to have activity in R. meliloti nodulation gene induction assays. The compounds apigenin and eriodictyol have activities two-fifths and one-seventh that of luteolin, respectively. Several of the flavonoids tested (morin = naringenin > kaempferol = chrysin > quercetin = fisetin = hesperitin) demonstrate antagonistic activity toward induction by luteolin. The most effective antagonist is the coumarin, umbelliferone.  相似文献   

9.
Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical mediated diseases. Hence their interactions with cell membranes, which generally serve as targets for lipid peroxidation, are of enormous interest. Here we report in vitro studies, via absorption and fluorescence spectroscopy, on the effects of several flavonoids (namely fisetin, quercetin, chrysin, morin, and 3-hydroxyflavone, 3-HF) in goat RBC membranes. Owing to the presence of functionally relevant membrane protein components embedded in the lipid bilayer RBC ghosts provide a more realistic system for exploring drug actions in biomembranes than simpler membrane models like phosphatidylcholine liposomes used in our previous studies [e.g. B. Sengupta, A. Banerjee, P.K. Sengupta, FEBS Lett. 570 (2004) 77-81]. Here, we demonstrate that binding of the flavonoids to the RBC membranes significantly inhibits lipid peroxidation, and at the same time enhances their integrity against hypotonic lysis. Interestingly, the antioxidant and antihemolytic activities are found to be crucially dependent on the locations of the flavonoids in the membrane matrix as revealed by fluorescence studies. Furthermore, we observe that FRET (from membrane protein tryptophans to flavonoids) occurs with significant efficiency indicating that the flavonoid binding sites lie in close proximity to the tryptophan residues in the ghost membrane proteins.  相似文献   

10.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

11.
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe 3+ ) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfil these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe 3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu 2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu 2+ additionally at the ortho -catechol group, the chelating site for catechin with Cu 2+ at pH 7.4. Chelation studies of Fe 3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe 3+ , complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe 3+ at pH 5.5, suggesting that flavonoids reduce Fe 3+ to Fe 2+ before association.  相似文献   

12.
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe 3+ ) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfil these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe 3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu 2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu 2+ additionally at the ortho -catechol group, the chelating site for catechin with Cu 2+ at pH 7.4. Chelation studies of Fe 3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe 3+ , complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe 3+ at pH 5.5, suggesting that flavonoids reduce Fe 3+ to Fe 2+ before association.  相似文献   

13.
The antibacterial activities of flavonoids were found by the paper disk method to be enhanced by combining or mixing them. The combinations of quercetin and quercitrin, quercetin and morin, and quercetin and rutin were much more active than either flavonoid alone. Although rutin did not show activity in itself, the antibacterial activities of quercetin and morin were enhanced in the presence of rutin. The antibacterial activities of flavonoids, in combination with morin and rutin, were evaluated, based on the minimum inhibition concentration (MIC) in a liquid culture, by using Salmonella enteritidis and Bacillus cereus as the test bacteria. The activities of galangin, kaempherol, myricetin and fisetin were each enhanced in the presence of rutin when S. enteritidis was used as the test bacterium. The MIC value for kaempherol was markedly decreased by the addition of rutin. Morin inhibited DNA synthesis, and this effect was promoted by rutin at a concentration of 25 microg/ml.  相似文献   

14.
The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.  相似文献   

15.
The inhibitory action of the flavonoid quercetin has been examined on the calcium-transport ATPase of synaptosomal vesicles and compared to that of two other flavonoids, morin and rutin. We have found that while quercetin caused a 50% inhibition of calcium transport at a concentration of 15 μM, morin and rutin had similar effects at concentrations of about 200 μM. A similar order of potency was observed also for ATP hydrolysis, though at higher concentrations. Quercetin also strongly inhibited phosphorylation of membrane proteins by ATP in synaptosomal vesicles. Rutin and morin had an almost negligible effect on membrane protein phosphorylation. The order of inhibitory potency of the flavonoids on the Ca2+-transport ATPase from synaptosomal vesicles: quercetin > morin > rutin, could be linked to their possible solubility in the membrane lipid phase since: (1) it paralleled their partitioning between a mixture of oil and water; (2) it paralleled their uptake from the reaction mixture by synaptosomal vesicles and phosphatidylcholine liposomes; (3) they had almost equal potency as inhibitors of the water soluble system of histone phosphorylation by protein kinase.  相似文献   

16.
Tripathi BN  Gaur JP 《Planta》2004,219(3):397-404
A 4-h exposure of Scenedesmus sp. to Cu or Zn enhanced intracellular levels of both test metals and proline. The level of intracellular proline increased markedly up to 10 µM Cu, but higher concentrations were inhibitory. However, intracellular proline consistently increased with increasing concentration of Zn in the medium. Cu and Zn induced oxidative stress in the test alga by increasing lipid peroxidation and membrane permeability, and by reducing SH content. Pretreatment of the test alga with 1 mM proline for 30 min completely alleviated Cu-induced lipid peroxidation, minimized K+ efflux and also reduced depletion of the SH pool. But proline pretreatment could only slightly reduce Zn-induced oxidative stress. Interestingly, proline pretreatment increased the level of Cu (25–54%) and Zn (19–49%) inside the cells. It did not affect the activities of superoxide dismutase, ascorbate peroxidase or catalase, but improved glutathione reductase activity under Cu and Zn stress. A comparison of the effects of proline pretreatment on lipid peroxidation by Cu, Zn, methyl viologen and ultraviolet-B radiation suggests that proline protects cells from metal-induced oxidative stress by scavenging reactive oxygen species rather than by chelating metal ions. Pretreatment of cells with a known antioxidant (ascorbate) and a hydroxyl radical scavenger (sodium benzoate) considerably reduced metal-induced lipid peroxidation and proline accumulation. However, sodium benzoate had a very mild effect on Zn-induced lipid peroxidation and proline accumulation. The present study demonstrates that proline possibly acts by detoxifying reactive oxygen species, mainly hydroxyl radicals, rather than by improving the antioxidant defense system under metal stress.Abbreviations APOX Ascorbate peroxidase - CAT Catalase - GR Glutathione reductase - MDA Malondialdehyde - MV Methyl viologen - ROS Reactive oxygen species - SH Sulphydryl - SOD Superoxide dismutase - UV-B Ultraviolet-B radiation  相似文献   

17.
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.  相似文献   

18.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds, including fisetin, morin and myricetin, on the susceptibility of low-density lipoprotein (LDL) to oxidative modification and on oxLDL uptake in macrophages. The results demonstrated that fisetin had stronger inhibitory activity than the other two on inhibiting Cu(2+)-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. The class B scavenger receptor, CD36, to which oxLDL binds, is present in atherosclerotic lesions. Treatment of U937-derived macrophages with myricetin (20 microM) significantly inhibited CD36 cell surface protein and mRNA expression (p<0.01). Fisetin, morin and myricetin (20 microM) also reduced the feed-forward induction of CD36 mRNA and surface protein expression by PPARgamma. The inhibition of CD36 by flavonols was mediated by interference with PPARgamma activation thus counteracting the deleterious autoamplification loop of CD36 expression stimulated by PPARgamma ligand. All three flavonols (10 and 20 microM) markedly decreased the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake in U937-derived macrophages dose-dependently. Current evidences indicate that fisetin, morin and myricetin not only prevent LDL from oxidation but also block oxLDL uptake by macrophages at least in part through reducing CD36 gene expression on macrophages. In conclusion, flavonols may play a role in ameliorating atherosclerosis.  相似文献   

19.
Inhibition of xanthine oxidase by flavonoids   总被引:10,自引:0,他引:10  
Various dietary flavonoids were evaluated in vitro for their inhibitory effect on xanthine oxidase, which has been implicated in oxidative injury to tissue by ischemia-reperfusion. Xanthine oxidase activity was determined by directly measuring uric acid formation by HPLC. The structure-activity relationship revealed that the planar flavones and flavonols with a 7-hydroxyl group such as chrysin, luteolin, kaempferol, quercetin, myricetin, and isorhamnetin inhibited xanthine oxidase activity at low concentrations (IC50 values from 0.40 to 5.02 microM) in a mixed-type mode, while the nonplanar flavonoids, isoflavones and anthocyanidins were less inhibitory. These results suggest that certain flavonoids might suppress in vivo the formation of active oxygen species and urate by xanthine oxidase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号