首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
N Moscufo  A G Yafal  A Rogove  J Hogle    M Chow 《Journal of virology》1993,67(8):5075-5078
During the entry of poliovirus into cells, a conformational transition occurs within the virion that is dependent upon its binding to the cell surface receptor. This conformational rearrangement generates an altered particle of 135S, results in the extrusion of capsid protein VP4 and the amino terminus of VP1 from the virion interior, and leads to the acquisition of membrane-binding properties by the 135S particle. Although the subsequent fate of VP4 is unknown, its apparent absence from purified 135S particles has long suggested that VP4 is not directly involved during virus entry. We report here the construction by site-specific mutagenesis of a nonviable VP4 mutant that upon transfection of the cDNA appears to form mature virus particles. These particles, upon interaction with the cellular receptor, undergo the 135S conformational transition but are defective at a subsequent stage in virus entry. The results demonstrate that the participation of VP4 is required during cell entry of poliovirus. In addition, these data indicate the existence of additional stages in the cell entry process beyond receptor binding and the transition to 135S particles. These post-135S stages must include the poorly understood processes by which nonenveloped viruses cross the cell membrane, uncoat, and deliver their genomes into the cytoplasm.  相似文献   

2.
The mechanism by which poliovirus infects the cell has been characterized by a combination of biochemical and structural studies, leading to a working model for cell entry. Upon receptor binding at physiological temperature, native virus (160S) undergoes a conformational change to a 135S particle from which VP4 and the N terminus of VP1 are externalized. These components interact with the membrane and are proposed to form a membrane pore. An additional conformational change in the particle is accompanied by release of the infectious viral RNA genome from the particle and its delivery, presumably through the membrane pore into the cytoplasm, leaving behind an empty 80S particle. In this report, we describe the generation of a receptor-decorated liposome system, comprising nickel-chelating nitrilotriacetic acid (NTA) liposomes and His-tagged poliovirus receptor, and its use in characterizing the early events in poliovirus infection. Receptor-decorated liposomes were able to capture virus and induce a temperature-dependent virus conversion to the 135S particle. Upon conversion, 135S particles became tethered to the liposome independently of receptor by a membrane interaction with the N terminus of VP1. Converted particles had lost VP4, which partitioned with the membrane. The development of a simple model membrane system provides a novel tool for studying poliovirus entry. The liposome system bridges the gap between previous studies using either soluble receptor or whole cells and offers a flexible template which can be extrapolated to electron microscopy experiments that analyze the structural biology of nonenveloped virus entry.  相似文献   

3.
During entry into host cells, poliovirus undergoes a receptor-mediated conformational transition to form 135S particles with irreversible exposure of VP4 capsid sequences and VP1 N termini. To understand the role of VP4 during virus entry, the fate of VP4 during infection by site-specific mutants at threonine-28 of VP4 (4028T) was compared with that of the parental Mahoney type 1 virus. Three virus mutants were studied: the entry-defective, nonviable mutant 4028T.G and the viable mutants 4028T.S and 4028T.V, in which residue threonine-28 was changed to glycine, serine, and valine, respectively. We show that mutant and wild-type (WT) VP4 proteins are localized to cellular membranes after the 135S conformational transition. Both WT and viable 4028T mutant particles interact with lipid bilayers to form ion channels, whereas the entry-defective 4028T.G particles do not. In addition, the electrical properties of the channels induced by the mutant viruses are different from each other and from those of WT Mahoney and Sabin type 3 viruses. Finally, uncoating and/or cytoplasmic delivery of the viral genome is altered in the 4028T mutants: the 4028T.G lethal mutant does not release its genome into the cytoplasm, and genome delivery is slower during infection by mutant 4028T.V 135S particles than by mutant 4028T.S or WT 135S particles. The distinctive electrical characteristics of the different 4028T mutant channels indicate that VP4 sequences might form part of the channel structure. The different entry phenotypes of these VP4 mutants suggest that the ion channels may be related to VP4's role during genome uncoating and/or delivery.  相似文献   

4.
The steps in poliovirus infection leading to viral entry and uncoating are not well understood. Current evidence suggests that the virus first binds to a plasma membrane-bound receptor present in viable cells, leading to a conformational rearrangement of the viral proteins such that the virus crosses the membrane and releases the genomic RNA. The studies described in this report were undertaken to determine if poliovirus (160S) as well as one of the subviral particles (135S) could interact with membranes lacking poliovirus receptors in an effort to begin to understand the process of uncoating of the virus. We report that both forms of viral particles, 160S and 135S, interact with lipid membranes and induce the formation of ion-permeable channels in a manner that does not require acid pH. The channels induced by the viral particles 160S have a voltage-dependent conductance which depends on the ionic composition of the medium. Our findings raise the possibility that viral entry into cells may be mediated by direct interaction of viral surface proteins with membrane lipids.  相似文献   

5.
To examine the interaction of the poliovirus receptor (PVR) with virus and the role of the PVR in virus entry, the PVR was expressed in insect cells. Poliovirus bound to insect cells infected with a recombinant baculovirus (AcPVR) carrying cDNA encoding the PVR. Antibodies raised against PVR expressed in bacteria immunoprecipitated a 67-kilodalton polypeptide from cytoplasmic extracts of AcPVR-infected cells. Treatment of AcPVR-infected cells with tunicamycin revealed that the PVR is a glycoprotein containing N-glycosidic linkages and that carbohydrate accounts for nearly 50% of its molecular weight as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When PVR was solubilized from AcPVR-infected insect cells and incubated with poliovirus, viral infectivity was neutralized. Sedimentation analysis revealed that irreversibly altered 135S particles were formed after incubation of poliovirus at 37 degrees C with solubilized extracts of AcPVR-infected insect cells. These results demonstrate that poliovirus eclipse may result from interaction with the cell receptor at neutral pH in the absence of membranes and suggest that soluble receptors may be effective antiviral agents against picornaviruses.  相似文献   

6.
The poliovirus 135S particle is infectious.   总被引:14,自引:11,他引:3       下载免费PDF全文
S Curry  M Chow    J M Hogle 《Journal of virology》1996,70(10):7125-7131
The molecular mechanism of cell entry by unenveloped viruses is poorly understood. The picornaviruses poliovirus, human rhinovirus, and coxsackievirus convert to an altered form (the 135S or A particle) upon interaction with receptors on susceptible cells at 37 degrees C. The 135S particle is thought to be a necessary intermediate because it accumulates inside susceptible cells soon after infection and drugs which inhibit conversion of the virus to this form also prevent infection. However, since a variable fraction of the altered 135S particles is reported to elute unproductively from the surface of susceptible cells, their precise role remains unclear. We have found that poliovirus 135S particles can infect Chinese hamster ovary (CHO) and murine L cells, neither of which are susceptible to infection by native poliovirus. The infectivity of the particles in tissue culture appears to be between 10(3) to 10(5) times less than that of poliovirus on HeLa cells. The 135S particle infectivity was not sensitive to RNase but was greatly reduced by proteolytic treatment. Proteolysis specifically removed the newly exposed N terminus of VP1, a feature which has previously been shown to mediate interactions of the particle with lipid membranes. These results demonstrate that although the infectivity of the 135S particle appears to be receptor independent, it nonetheless requires some property associated with the protein coat. In particular, the N terminus of VP1 plays an important role in the infection process. Our findings are consistent with the hypothesis that the 135S particle is an intermediate in the normal cell entry pathway of poliovirus infection.  相似文献   

7.
In the current model of poliovirus entry, the initial interaction of the native virion with its cellular receptor is followed by a transition to an altered form, which then acts as an intermediate in viral entry. While the native virion sediments at 160S in a sucrose gradient, the altered particle sediments at 135S, has lost the coat protein VP4, and has become more hydrophobic. Altered particles can be found both associated with cells and in the culture medium. It has been hypothesized that the cell-associated 135S particle releases the viral genome into the cell cytoplasm and that nonproductive transitions to the 135S form are responsible for the high particle-to-PFU ratio observed for polioviruses. At 25 degrees C, a temperature at which the transition to 135S particles does not occur, the P1/Mahoney strain of poliovirus was unable to replicate, and cold-adapted (ca) mutants were selected from the population. These mutants have not gained the ability to convert to 135S particles at 25 degrees C, and the block to wild-type (wt) infection at low temperatures is not at the level of cellular entry. The particle-to-PFU ratio of poliovirus does not change at 25 degrees C in the absence of alteration. Three independent amino acid changes in the 2C coding region were identified in ca mutants, at positions 218 (Val to Ile), 241 (Arg to Ala), and 309 (Met to Val). Introduction of any of these mutations individually into wt poliovirus by site-directed mutagenesis confers the ca phenotype. All three serotypes of the Sabin vaccine strains and the P3/Leon strain of poliovirus also exhibit the ca phenotype. These results do not support a model of poliovirus entry into cells that includes an obligatory transition to the 135S particle.  相似文献   

8.
Poliovirus provides a well-characterized system for understanding how nonenveloped viruses enter and infect cells. Upon binding its receptor, poliovirus undergoes an irreversible conformational change to the 135S cell entry intermediate. This transition involves shifts of the capsid protein beta barrels, accompanied by the externalization of VP4 and the N terminus of VP1. Both polypeptides associate with membranes and are postulated to facilitate entry by forming a translocation pore for the viral RNA. We have calculated cryo-electron microscopic reconstructions of 135S particles that permit accurate placement of the beta barrels, loops, and terminal extensions of the capsid proteins. The reconstructions and resulting models indicate that each N terminus of VP1 exits the capsid though an opening in the interface between VP1 and VP3 at the base of the canyon that surrounds the fivefold axis. Comparison with reconstructions of 135S particles in which the first 31 residues of VP1 were proteolytically removed revealed that the externalized N terminus is located near the tips of propeller-like features surrounding the threefold axes rather than at the fivefold axes, as had been proposed in previous models. These observations have forced a reexamination of current models for the role of the 135S particle in transmembrane pore formation and suggest testable alternatives.  相似文献   

9.
At 37°C, the structure of poliovirus is dynamic, and internal polypeptides VP4 and N terminus of VP1 (residues 1 to 53) externalize reversibly. An Fab fragment of a monospecific antibody, which binds to residues 39 to 55 of VP1, was utilized to locate the N termini of VP1 in native (160S) particles in this "breathing" state. Fab and virus were mixed and imaged via cryogenic electron microscopy. The resulting reconstruction showed the capsid expands similarly to the irreversibly altered cell entry intermediate (135S) particle, but the N terminus of VP1 is located near the 2-fold axes, instead of the "propeller tip" as in 135S particles.  相似文献   

10.
The confinement of membrane proteins by lipid-lipid interactions into specialized detergent-insoluble membrane (DIM) microdomains has been proposed as a general mechanism to recruit selectively lipid-modified proteins and specific transmembrane proteins. Poliovirus capsid VP4 protein and its precursors are myristoylated at the NH(2)-terminal Gly residue. To determine whether poliovirus uses DIMs during its replicative cycle, we isolated DIMs from poliovirus-infected HeLa cells and identified the presence of capsid proteins and their precursors, proteinases 2A and 3C, and other viral proteins involved in poliovirus RNA replication such as protein 2C and the polymerase 3D. The morphology of these DIMs was similar to that of the previously described rosette-like vesicles associated with replication complexes isolated from poliovirus-infected cells. To examine the possible role of the myristoyl moiety in the targeting of poliovirus structural proteins to DIMs, we generated a chimeric protein consisting of the nine amino-terminal amino acids from VP4 fused to the amino terminus of the green fluorescent protein (GFP). The selected VP4 sequence was sufficient to confer N-myristoylation and targeting to DIMs to the GFP chimera. Mutations within this sequence known to affect both myristoylation and poliovirus assembly abrogated the targeting of the GFP chimera. These results indicate that the myristoylated amino-terminal nonapeptide from poliovirus VP4 protein constitutes a signal for incorporation into DIMs.  相似文献   

11.
Lysis of HeLa cells infected with poliovirus revealed intact virus; 135S particles, devoid of VP4 but containing the viral RNA; and 80S empty capsids. During infection the kinetics of poliovirus uncoating showed a continuous decrease of intact virus, while the number of 135S particles and empty shells increased. After 1.5 h of infection conformational transition to altered particles resulted in complete disappearance of intact virions. To investigate the mechanism of poliovirus uncoating, which has been suggested to depend on low pH in endosomal compartments of cells, we used lysosomotropic amines to raise the pH in these vesicles. In the presence of ammonium chloride, however, the kinetics of uncoating were similar to those for untreated cells, whereas in cells treated with methylamine, monensin, or chloroquine, uncoating was merely delayed by about 30 min. This effect could be attributed to a delay of virus entry into cells after treatment with methylamine and monensin, whereas chloroquine stabilized the viral capsid itself. Thus, elevation of endosomal pH did not affect virus uncoating. We therefore propose a mechanism of poliovirus uncoating which is independent of low pH.  相似文献   

12.
Huang Y  Hogle JM  Chow M 《Journal of virology》2000,74(18):8757-8761
Poliovirus binding to its receptor (PVR) on the cell surface induces a conformational transition which generates an altered particle with a sedimentation value of 135S versus the 160S of the native virion. A number of lines of evidence suggest that the 135S particle is a cell entry intermediate. However, the low infection efficiencies of the 135S particle and the absence of detectable 135S particles during infection at 26 degrees C by the cold-adapted mutants argue against a role for the 135S particle during the cell entry process. We show here that binding of 135S-antibody complexes to the Fc receptor (CDw32) increases the infectivity of these particles by 2 to 3 orders of magnitude. Thus, the low efficiency of infection by 135S particles is due in part to the low binding affinity of these particles. In addition, we show that there is an additional stage in the entry process that is associated with RNA release. This stage occurs after formation of the 135S particle, is rate limiting during infection at 37 degrees C, but not at 26 degrees C, and is PVR independent. The data also demonstrate that during infection at 26 degrees C, the rate-limiting step is the PVR-mediated conversion of wild-type 160S particles to 135S particles. This suggests that during infection at 26 degrees C by the cold-adapted viruses, 135S particles are formed, but they fail to accumulate to detectable levels because the subsequent post-135S particle events occur at a significantly faster rate than the initial conversion of 160S to 135S particles. These data support a model in which the 135S particle is an intermediate during poliovirus entry.  相似文献   

13.
Upon interacting with its receptor, poliovirus undergoes conformational changes that are implicated in cell entry, including the externalization of the viral protein VP4 and the N terminus of VP1. We have determined the structures of native virions and of two putative cell entry intermediates, the 135S and 80S particles, at approximately 22-A resolution by cryo-electron microscopy. The 135S and 80S particles are both approximately 4% larger than the virion. Pseudoatomic models were constructed by adjusting the beta-barrel domains of the three capsid proteins VP1, VP2, and VP3 from their known positions in the virion to fit the 135S and 80S reconstructions. Domain movements of up to 9 A were detected, analogous to the shifting of tectonic plates. These movements create gaps between adjacent subunits. The gaps at the sites where VP1, VP2, and VP3 subunits meet are plausible candidates for the emergence of VP4 and the N terminus of VP1. The implications of these observations are discussed for models in which the externalized components form a transmembrane pore through which viral RNA enters the infected cell.  相似文献   

14.
Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.  相似文献   

15.
Polypeptides of amino acids 1 to 241 (PVR241) and 1 to 330 (PVR330) of the human poliovirus receptor (hPVR) were produced in a baculovirus expression system. PVR241 contained extracellular domains 1 and 2 of hPVR, and PVR330 contained extracellular domains 1, 2, and 3. These peptides were purified by immunoaffinity column chromatography with an anti-hPVR monoclonal antibody (MAb). After the purification, PVR241 and PVR330 appeared to retain their native conformation as judged by reactivity with an anti-PVR MAb that recognized domain 1 of hPVR in a conformation-dependent manner. The virulent Mahoney strain of poliovirus type 1 was mixed with the purified PVRs in various concentrations. An average of at least 43 PVR330 molecules were able to bind to one virion particle under the conditions used. The equilibrium dissociation constant between the PVR330 molecule and the PVR binding site (canyon) on the virion was determined to be 4.50 ± (0.86) × 10−8 M at 4°C. Higher rates of conformational change of the virus (160S) to 135S and 80S particles were observed as the concentration of PVR330 was increased. In this in vitro system, the ratio of the amount of the 135S particle to that of the 80S particle seemed to be always constant. After the disappearance of the 160S particle, the amount of the 80S particle was not increased by further incubation at 37°C. These results suggested that the 80S particle was not derived from the 135S particle under the conditions used in this study.  相似文献   

16.
R 78206 (a pyridazinamine derivative) inhibits the formation of poliovirus eclipse particles. Its effect on the intracellular location of poliovirus was studied by separating subcellular fractions in iso-osmotic Nycodenz gradients. The compound did not inhibit internalization of intact virus into small lipid vesicles, but it did inhibit the release of virus from these vesicles and its entry into lysosomes.  相似文献   

17.
Lipid rafts are membrane microdomains enriched in cholesterol, sphingolipids, and glycolipids that have been implicated in many biological processes. Since cholesterol is known to play a key role in the entry of some other viruses, we investigated the role of cholesterol and lipid rafts in the host cell plasma membrane in Newcastle Disease Virus (NDV) entry. We used methyl-β-cyclodextrin (MβCD) to deplete cellular cholesterol and disrupt lipid rafts. Our results show that the removal of cellular cholesterol partially reduces viral binding, fusion and infectivity. MβCD had no effect on the expression of sialic acid containing molecule expression, the NDV receptors in the target cell. All the above-described effects were reversed by restoring cholesterol levels in the target cell membrane. The HN viral attachment protein partially localized to detergent-resistant membrane microdomains (DRMs) at 4°C and then shifted to detergent-soluble fractions at 37°C. These results indicate that cellular cholesterol may be required for optimal cell entry in NDV infection cycle.  相似文献   

18.
During cell entry, native poliovirus (160S) converts to a cell-entry intermediate (135S) particle, resulting in the externalization of capsid proteins VP4 and the amino terminus of VP1 (residues 1 to 53). Externalization of these entities is followed by release of the RNA genome (uncoating), leaving an empty (80S) particle. The antigen-binding fragment (Fab) of a monospecific peptide 1 (P1) antibody, which was raised against a peptide corresponding to amino-terminal residues 24 to 40 of VP1, was utilized to track the location of the amino terminus of VP1 in the 135S and 80S states of poliovirus particles via cryogenic electron microscopy (cryo-EM) and three-dimensional image reconstruction. On 135S, P1 Fabs bind to a prominent feature on the external surface known as the “propeller tip.” In contrast, our initial 80S-P1 reconstruction showed P1 Fabs also binding to a second site, at least 50 Å distant, at the icosahedral 2-fold axes. Further analysis showed that the overall population of 80S-P1 particles consisted of three kinds of capsids: those with P1 Fabs bound only at the propeller tips, P1 Fabs bound only at the 2-fold axes, or P1 Fabs simultaneously bound at both positions. Our results indicate that, in 80S particles, a significant fraction of VP1 can deviate from icosahedral symmetry. Hence, this portion of VP1 does not change conformation synchronously when switching from the 135S state. These conclusions are compatible with previous observations of multiple conformations of the 80S state and suggest that movement of the amino terminus of VP1 has a role in uncoating. Similar deviations from icosahedral symmetry may be biologically significant during other viral transitions.  相似文献   

19.
Rotavirus infectivity is dependent on the proteolytic cleavage of the VP4 spike protein into VP8* and VP5* proteins. Proteolytically activated virus, as well as expressed VP5*, permeabilizes membranes, suggesting that cleavage exposes a membrane-interactive domain of VP5* which effects rapid viral entry. The VP5* protein contains a single long hydrophobic domain (VP5*-HD, residues 385 to 404) at an internal site. In order to address the role of the VP5*-HD in permeabilizing cellular membranes, we analyzed the entry of o-nitrophenyl-beta-D-galactopyranoside (ONPG) into cells induced to express VP5* or mutated VP5* polypeptides. Following IPTG (isopropyl-beta-D-thiogalactopyranoside) induction, VP5* and VP5* truncations containing the VP5*-HD permeabilized cells to the entry and cleavage of ONPG, while VP8* and control proteins had no effect on cellular permeability. Expression of VP5* deletions containing residues 265 to 474 or 265 to 404 permeabilized cells; however, C-terminal truncations which remove the conserved GGA (residues 399 to 401) within the HD abolished membrane permeability. Site-directed mutagenesis of the VP5-HD further demonstrated a requirement for residues within the HD for VP5*-induced membrane permeability. Functional analysis of mutant VP5*s indicate that conserved glycines within the HD are required and suggest that a random coiled structure rather than the strictly hydrophobic character of the domain is required for permeability. Expressed VP5* did not alter bacterial growth kinetics or lyse bacteria following induction. Instead, VP5*-mediated size-selective membrane permeability, releasing 376-Da carboxyfluorescein but not 4-kDa fluorescein isothiocyanate-dextran from preloaded liposomes. These findings suggest that the fundamental role for VP5* in the rotavirus entry process may be to expose triple-layered particles to low [Ca](i), which uncoats the virus, rather than to effect the detergent-like lysis of early endosomal membranes.  相似文献   

20.
Barman S  Nayak DP 《Journal of virology》2007,81(22):12169-12178
Lipid rafts play critical roles in many aspects of the influenza A virus life cycle. Cholesterol is a critical structural component of lipid rafts, and depletion of cholesterol leads to disorganization of lipid raft microdomains. In this study, we have investigated the effect of cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) treatment on influenza virus budding. When virus-infected Madin-Darby canine kidney cells were treated with MbetaCD at the late phase of infection for a short duration, budding of virus particles, as determined by protein analysis and electron microscopy, increased with increasing concentrations and lengths of treatment. However, infectious virus yield varied, depending on the concentration and duration of MbetaCD treatment. Low concentrations of MbetaCD increased infectious virus yield throughout the treatment period, but higher concentrations caused an initial increase of infectious virus titer followed by a decrease with a longer duration. Relative infectivity of the released virus particles, on the other hand, decreased with increasing concentrations and durations of MbetaCD treatment. Loss of infectivity of virus particles is due to multiple effects of MbetaCD-mediated cholesterol depletion causing disruption of lipid rafts, changes in structural integrity of the viral membrane, leakage of viral proteins, a nick or hole on the viral envelope, and disruption of the virus structure. Exogenous cholesterol increased lipid raft integrity, inhibited particle release, and partially restored the infectivity of the released virus particles. These data show that disruption of lipid rafts by cholesterol depletion caused an enhancement of virus particle release from infected cells and a decrease in the infectivity of virus particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号