首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.  相似文献   

2.
Based on the potential benefits for long-term human health, there is interest in developing sustainable nutritional strategies for lowering medium-chain saturated fatty acids (FA) and increasing specific unsaturated FA in ruminant milk. Dietary supplements of extruded linseeds (EL), fish oil (FO) or a mixture of EL and FO increase cis-9,trans-11 CLA and long-chain n-3 polyunsaturated FA in bovine milk. Supplements of FO cause milk fat depression in lactating cows, but information for dairy goats is limited. A total of 14 Alpine goats were used in a replicated 3×3 Latin square with 28-days experimental periods to examine the effects of EL alone or in combination with FO on animal performance, milk fat synthesis and milk FA composition. Treatments comprised diets based on natural grassland hay supplemented with no additional oil (control), 530 of EL or 340 g/day of EL and 39 g/day of FO (ELFO). Compared with the control, ELFO tended (P=0.08) to lower milk fat yield, whereas EL increased (P<0.01) milk fat content and yield (15% and 10%, respectively). Relative to EL, ELFO decreased (P<0.01) milk fat content and yield (19% and 17%, respectively). Relative to the control and ELFO, EL decreased (P<0.05) milk 10:0 to 16:0 and odd- and branched-chain FA content and increased 18:0, cis-18:1, trans-13 18:1 (and their corresponding ∆-9 (desaturase products), trans-12,cis-14 CLA, cis-13,trans-15 CLA, cis-12,trans-14 CLA and trans-11,cis-13 CLA and 18:3n-3 concentrations. ELFO was more effective for enriching (P<0.05) milk cis-9, trans-11 CLA and trans-11 18:1 concentrations (up to 5.4- and 7.1-fold compared with the control) than EL (up to 1.7- and 2.5-fold increases). Furthermore, ELFO resulted in a substantial increase in milk trans-10 18:1 concentration (5.4% total FA), with considerable variation between individual animals. Relative to the control and EL, milk fat responses to ELFO were characterized by increases (P<0.05) in milk trans-16:1 (Δ9 to 11), trans-18:1 (Δ6 to 11), trans-18:2, CLA (cis-9,trans-11, trans-9,cis-11, trans-8,trans-10 and trans-7,trans-9) and 20- and 22-carbon FA concentrations. Overall, EL resulted in a relatively high cis-9 18:1 concentration and an increase in the 18:3n-3/18:2n-6 ratio, whereas combining EL and FO resulted in substantial increases in trans-FA, marginal enrichment in 20:5n-3 and 22:6n-3 and lower 16:0 concentration changes associated with a decrease in milk fat content. In conclusion, data provide further evidence of differential mammary lipogenic responses to diet in the goat compared with the cow and sheep.  相似文献   

3.
The objective of this study was to determine the effect of adding fish oil (FO) and sunflower oil (SFO) to grazing dairy cows’ diets on the temporal changes in milk conjugated linoleic acid (cis-9, trans-11 CLA). Sixteen Holstein cows were divided into two diet regimen groups. One group (CONT) was fed a basal diet (7.6 kg DM basis) plus 400 g animal fat. The other group (FOSFO) were fed a basal diet plus 100 g of FO and 300 g of SFO (FOSFO). The cows were milked twice a day and milk samples were collected every 3-day for a period of 21 days. Both groups grazed together on pasture ad libitum and fed treatment diets after the morning and afternoon milking. Milk production, milk fat percentages, milk fat yield, milk protein percentages, and milk protein yield were not affected (P>0.05) by treatment diets. The concentrations of cis-9 trans-11 CLA and vaccenic acid (VA) in milk fat were higher (P<0.05) for cows fed the FOSFO over 3 week of lipid supplementation. The concentration of cis-9 trans-11 CLA in milk fat reached maximum on day 3 with both diets and remained relatively constant thereafter. The concentration of VA in milk fat followed the same pattern of temporal changes as cis-9 trans-11 CLA. In conclusion, milk cis-9, trans-11 CLA and VA concentrations increased with FO and SFO supplementation compared with the CONT diet and the increase reached a plateau on day 3 of supplementation and remained relatively constant throughout the remainder of the study.  相似文献   

4.
《Small Ruminant Research》2009,85(1-3):47-53
Two experiments were carried out to study the effects of supplementing the ration of lactating ewes with vegetable fats (sunflower oil, SO or hydrogenated palm oil, HPO; HIDROPALM®) on diet digestibility, milk yield and milk composition, and on the concentration of the conjugated linoleic acid (CLA) C18:2 cis-9 trans-11 and C18:1 trans-11 (vaccenic acid, VA) and other main fatty acids in milk fat. Treatments involved a control diet, without added oil, and 2 diets supplemented with either 12 g/kg SO or 12 g/kg HPO on a dry matter (DM) basis. In the first experiment, 6 non-pregnant, non-lactating Lacaune ewes were used following a 3 × 3 replicated Latin Square design. Addition of vegetable fat supplement to the diet increased digestibility of DM, organic matter (OM) and crude protein (CP), but did not affect that of the ether extract (EE), neutral detergent fibre (NDF) or acid detergent fibre (ADF). In the second experiment, 60 Lacaune dairy ewes mid-way through lactation (120 ± 12 days in milk, 0.98 ± 0.03 kg/day average milk yield) were divided into three equal-sized groups each of which was assigned to one of the three experimental diets for 4 weeks. Compared with the control treatment, supplementation with HPO increased milk yield and energy-corrected milk. But neither vegetable fat supplement modified percentages of fat and protein in milk. Supplementation with HPO increased C14:1, C16:1 and C16:0 content and reduced C18:0 and C18:1 cis-9 content in milk fat. Supplementation with SO increased the VA content in milk fat by 36% and that of cis-9 trans-11 CLA by 29% in comparison with the control diet. Supplementation with HPO led to milk fat with 15% more cis-9 trans-11 CLA than control milk. In conclusion, adding a moderate dose of HPO or SO to the diets increased CLA concentration in milk fat. Nevertheless, supplementation with SO was more effective than HPO in increasing CLA concentration in milk fat and reducing the atherogenicity index, improving milk quality from the human health standpoint.  相似文献   

5.
Oilseeds offer some protection to the access of ruminal microorganisms and may be an alternative to calcium salts of fatty acids (FA), which are not fully inert in the ruminal environment. This study aimed to evaluate the effects of different sources of FA supplementation on apparent total tract nutrient digestibility, milk yield and composition, and energy balance (EB) of cows during the transition period and early lactation. We compared diets rich in C18:2 and C18:3 FA. Multiparous Holstein cows were randomly assigned to receive one of the four diets: control (n=11); whole flaxseed (WF, n=10), 60 and 80 g/kg (diet dry matter (DM) basis) of WF during the prepartum and postpartum periods, respectively; whole raw soybeans (WS, n=10), 120 and 160 g/kg (diet DM basis) of WS during the prepartum and postpartum periods, respectively; and calcium salts of unsaturated fatty acids (CSFA, n=11), 24 and 32 g/kg (diet DM basis) of CSFA during the prepartum and postpartum periods, respectively. Dry cows fed WF had higher DM and net energy of lactation (NEL) intake than those fed WS or CSFA. The FA supplementation did not alter DM and NDF apparent total tract digestibility, dry cows fed WF exhibited greater NDF total tract digestion than cows fed WS or CSFA. Feeding WS instead of CSFA did not alter NEL intake and total tract digestion of nutrients, but increased milk fat yield and concentration. Calculated efficiency of milk yield was not altered by diets. FA supplementation increased EB during the postpartum period. Experimental diets increased long-chain FA (saturated and unsaturated FA) in milk. In addition, cows fed WS and CSFA had higher C18:1 trans-11 FA and C18:2 cis, and lower C18:3 FA in milk than those fed WF. Furthermore, cows fed CSFA had higher C18:1 trans-11 and cis-9, trans-11 FA than cows fed WS. Although supplemental C18:2 and C18:3 FA did not influence the milk yield of cows, they positively affected EB and increased unsaturated long-chain FA in milk fat.  相似文献   

6.
Previously, feeding fish oil (FO) and sunflower seeds to dairy cows resulted in the greatest increases in the concentrations of vaccenic acid (VA, t11 C18:1) and conjugated linoleic acid (CLA) in milk fat. The objective of this study was to evaluate the effects of forage level in diets containing FO and sunflower oil (SFO) on the production of trans C18:1 and CLA by mixed ruminal microbes. A dual-flow continuous culture system consisting of three fermenters was used in a 3 × 3 Latin-square design. Treatments consisted of (1) 75:25 forage:concentrate (HF); (2) 50:50 forage:concentrate (MF); and (3) 25:75 forage:concentrate (LF). FO and SFO were added to each diet at 1 and 2 g/100 g dry matter (DM), respectively. The forage source was alfalfa pellets. During 10-day incubations, fermenters were fed treatment diets three times daily (140 g/day, divided equally between three feedings) as TMR diet. Effluents from the last 3 days of incubation were collected and composited for analysis. The concentration of trans C18:1 (17.20, 26.60, and 36.08 mg/g DM overflow for HF, MF, and LF treatments, respectively) increased while CLA (2.53, 2.35, and 0.81 mg/g DM overflow) decreased in a linear manner (P < 0.05) as dietary forage level decreased. As dietary forage levels decreased, the concentrations of t10 C18:1 (0.0, 10.5, 33.5 mg/g DM) in effluent increased ( P < 0.05) and t10c12 CLA (0.08, 0.12, 0.35 mg/g DM) tended to increases (P < 0.09) linearly. The concentrations of VA (14.7, 13.9, 0.0 mg/g DM) and c9t11 CLA (1.78, 1.52, 0.03 mg/g DM) in effluent decreased in a linear manner ( P < 0.05) as dietary forage levels decreased. Decreasing dietary forage levels resulted in t10 C18:1 and t10c12 CLA replacing VA and c9t11 CLA, respectively, in fermenters fed FO and SFO.  相似文献   

7.
The potential combined effects of oleic, linoleic and linolenic acids supplementation on lactation performance and the milk fatty acid (FA) profile in dairy cows have not been well investigated. Our objective was to examine the effects of supplementation with a combination of these FA as well as the effects of removing each from the combination on lactation performance and the milk FA profile in dairy cows. Eight Holstein cows (101±11 days in milk) received four intravenously infused treatments in a 4×4 Latin square design, and each period lasted for 12 days which consisted of 5 days of infusion and 7 days of recovery. The control treatment (CTL) contained 58.30, 58.17 and 39.96 g/day of C18: 1 cis-9; C18: 2 cis-9, cis-12; and C18: 3 cis-9, cis-12, cis-15, respectively. The other three treatments were designated −C18: 1 (20.68, 61.17 and 41.72 g/day of C18: 1 cis-9; C18: 2 cis-9, cis-12; and C18: 3 cis-9, cis-12, cis-15, respectively), −C18: 2 (61.49, 19.55 and 42.13 g/day of C18: 1 cis-9; C18: 2 cis-9, cis-12; and C18: 3 cis-9, cis-12, cis-15, respectively) and −C18: 3 (60.89, 60.16 and 1.53 g/day of C18: 1 cis-9; C18: 2 cis-9, cis-12; and C18: 3 cis-9, cis-12, cis-15, respectively). Dry matter intake and lactose content were not affected by the treatments, but the milk protein content was lower in cows treated with −C18: 2 than that in CTL-treated cows. Milk yield as well as milk fat, protein and lactose yields were higher in cows treated with −C18: 3 than the yields in CTL-treated cows, and these yields increased linearly as the unsaturation degree of the supplemental FA decreased. Compared with the CTL treatment, the −C18: 2 treatment decreased milk C18: 2 cis-9 content (by 2.80%) and yield (by 22.12 g/day), and the −C18: 3 treatment decreased milk C18: 3 cis-9, cis-12, cis-15 content (by 2.72%) and yield (by 22.33 g/day). In contrast, removing C18: 1 cis-9 did not affect the milk content or yield of C18: 1 cis-9. The −C18: 2-treated cows had a higher C18: 1 cis-9 content and tended to have a higher C18: 1 cis-9 yield than CTL-treated cows. The yields of C8: 0, C14: 0 and C16: 0 as well as <C16: 0 tended to increase linearly as the unsaturation degree of the supplemental FA decreased (P=0.06, 0.07, 0.07 and 0.09, respectively). These results indicated that supplementation with C18 unsaturated FA might not independently affect the lactation performance and the milk FA profile of dairy cows.  相似文献   

8.
Feeding dietary supplements containing trans-10, cis-12-conjugated linoleic acid (t10,c12-CLA) has been shown to induce milk fat depression in cows, ewes and goats. However, the magnitude of the response is apparently less pronounced in lactating goats. The objective of this study was to evaluate the effects of increasing doses of CLA methyl esters (CLA-ME) on milk production, composition and fatty-acid profile of dairy goats. Eight Toggenburg goats were separated in two groups (four primiparous and four multiparous) and received the following dietary treatments in a 4×4 Latin Square design: CLA0: 45 g/day of calcium salts of fatty acids (CSFA); CLA15; 30 g/day of CSFA+15 g/day of CLA-ME; CLA30: 15 g/day of CSFA+30 g/day of CLA-ME; and CLA45: 45 g/day of CLA-ME. The CLA-ME supplement (Luta-CLA 60) contained 29.9% of t10,c12-CLA; therefore, the dietary treatments provided 0, 4.48, 8.97 and 13.45 g/day of t10,c12-CLA, respectively. Feed intake, milk production, concentration and secretion of milk protein and lactose, body condition score and body weight were unaffected by the dietary treatments. Milk fat secretion was reduced by 14.9%, 30.8% and 40.5%, whereas milk fat concentration was decreased by 17.2%, 33.1% and 40.7% in response to CLA15, CLA30 and CLA45, respectively. Secretions of both de novo synthesized and preformed fatty acids were progressively reduced as the CLA dose increased, but the magnitude of the inhibition was greater for the former. There was a linear reduction in most milk fat desaturase indexes (14:1/14:0, 16:1/16:0, 17:1/17:0 and 18:1/18:0). Milk fat t10,c12-CLA concentration and secretion increased with the CLA dose, and its apparent transfer efficiency from diet to milk was 1.18%, 1.17% and 1.21% for CLA15, CLA30 and CLA45 treatments, respectively. The estimated energy balance was linearly improved in goats fed CLA.  相似文献   

9.
Milk fatty acid (FA) profile has been previously used as a predictor of enteric CH4output in dairy cows fed diets supplemented with plant oils, which can potentially impact ruminal fermentation. The objective of this study was to investigate the relationships between milk FA and enteric CH4 emissions in lactating dairy cows fed different types of forages in the context of commonly fed diets. A total of 81 observations from three separate 3×3 Latin square design (32-day periods) experiments including a total of 27 lactating cows (96±27 days in milk; mean±SD) were used. Dietary forages were included at 60% of ration dry matter and were as follows: (1) 100% corn silage, (2) 100% alfalfa silage, (3) 100% barley silage, (4) 100% timothy silage, (5) 50 : 50 mix of corn and alfalfa silages, (6) 50 : 50 mix of barley and corn silages and (7) 50 : 50 mix of timothy and alfalfa silages. Enteric CH4output was measured using respiration chambers during 3 consecutive days. Milk was sampled during the last 7 days of each period and analyzed for components and FA profile. Test variables included dry matter intake (DMI; kg/day), NDF (%), ether extract (%), milk yield (kg/day), milk components (%) and individual milk FA (% of total FA). Candidate multivariate models were obtained using the Least Absolute Shrinkage and Selection Operator and Least-Angle Regression methods based on the Schwarz Bayesian Criterion. Data were then fitted into a random regression using the MIXED procedure including the random effects of cow, period and study. A positive correlation was observed between CH4 and DMI (r=0.59,P<0.001), whereas negative associations were observed between CH4 and cis9-17:1 (r=−0.58, P<0.001), and trans8, cis13-18:2 (r=−0.51,P<0.001). Three different candidate models were selected and the best fit candidate model predicted CH4 with a coefficient of determination of 0.84 after correction for cow, period and study effects and was: CH4 (g/day)=319.7−57.4×15:0−13.8×cis9-17:1−39.5×trans10-18:1−59.9×cis11-18:1−253.1×trans8, cis12-18:2−642.7×trans8, cis13-18:2−195.7×trans11, cis15-18:2+16.5×DMI. Overall and linear prediction biases of all models were not significant (P>0.19). Milk FA profile and DMI can be used to predict CH4emissions in dairy cows across a wide range of dietary forage sources  相似文献   

10.
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to one of four treatment diets in a 4×4 Latin square design with 28-day periods. Diets were fed as a total mixed ration with a 50 : 50 forage : concentrate ratio (dry matter (DM) basis) with the forage consisting of 75 : 25 maize silage : grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/day (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 l/kg DMI) and intensity (by 2.7 l/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield or intensity, whereas feeding MR had no effect.  相似文献   

11.
Based on potential benefits to human health, there is increasing interest in altering the composition of ruminant-derived foods. Including rapeseeds in the dairy cow diet is an effective strategy for replacing medium-chain saturated fatty acids (SFA) with cis-monounsaturated fatty acids (MUFA) in bovine milk, but there is limited information on the optimum level of supplementation. Decreases in SFA due to plant oils are also accompanied by increases in milk trans fatty acid (FA) content and it is possible that high oleic acid rapeseeds may result in a higher enrichment of cis-9 18:1 and lower increases in trans FAs in milk compared with conventional varieties. Seven multiparous lactating Holstein-Friesian cows were allocated to one of seven treatments in an incomplete Latin square design with five 28-day experimental periods, to evaluate the effect of replacing calcium salts of palm oil distillate (CPO; 41 g/kg diet dry matter, DM) with 128, 168 or 207 g/kg diet DM of conventional (COR) or a high oleic acid (HOR) rapeseed fed as a supplement milled with wheat. Rapeseed variety and inclusion level had no effect (P > 0.05) on DM intake, milk yield and composition. Both rapeseed varieties decreased linearly (P < 0.001) milk fat SFA content, which was partially compensated for by a linear increase (P < 0.001) in cis-9 18:1 concentration. Reductions in milk SFA were also associated with increases (P < 0.05) in trans 18:1 and total trans FA content, with no difference (P > 0.05) between rapeseed varieties. Replacing CPO in the diet with milled rapeseeds had no effect (P > 0.05) on total milk conjugated linoleic acid (CLA) concentration. Relative to a COR, inclusion of a high oleic acid variant in the diet increased (P = 0.01) the ratio of trans-MUFA : trans-polyunsaturated fatty acids in milk that may have implications with respect to cardiovascular disease risk in humans. In conclusion, data indicated that replacing CPO with milled rapeseeds at levels up to 1150 g oil/day could be used as a nutritional strategy to lower milk SFA content without inducing adverse effects on DM intake and milk production. HOR reduced milk fat SFA content to a greater extent than a conventional variety, but did not minimise associated increases in trans FA concentrations. However, the high oleic acid variant did alter the relative abundance of specific trans 18:1, CLA and trans 18:2 isomers compared with conventional rapeseeds.  相似文献   

12.
The objective of this study was to evaluate the effects of vegetable oil supplementation of ewe diets on the performance and fatty acid (FA) composition of their suckling lambs. Forty-eight pregnant Churra ewes (mean BW 64.3±0.92 kg) with their 72 newborn lambs (prolificacy=1.5) were assigned to one of four experimental diets, supplemented with 3% of hydrogenated palm (PALM), olive (OLI), soya (SOY) or linseed (LIN) oil. Lambs were nourished exclusively by suckling from their respective mothers. Ewes were milked once daily, and milk samples were taken once a week. When lambs reached 11 kg, they were slaughtered and samples were taken from musculus longissimus dorsi (intramuscular fat) and subcutaneous fat tissue. No changes were observed in milk yield, proximal composition or lamb performance (P>0.10). Milk and lamb subcutaneous and intramuscular fat samples from the PALM diet had the highest saturated fatty acid concentration, whereas those of the OLI, SOY and LIN diets had the lowest (P<0.05). The greatest monounsaturated fatty acid concentration was observed in milk from ewes fed OLI, and the least in milk and in lamb subcutaneous and intramuscular fat samples from LIN and PALM diets. Milk and lamb fat from ewes fed PALM displayed the highest 16:0 proportion and the lowest 18:0 (P<0.05). There were higher concentrations of cis-9 18:1 in OLI samples (P<0.05), more 18:2n-6 in SOY lambs and milk fat (P<0.001) and the highest levels of 18:3n-3 and 20:5n-3 in LIN samples (P<0.01). Milk and lamb subcutaneous and intramuscular samples from SOY and LIN diets contained the most cis-9, trans-11 conjugated linoleic acid, whereas PALM samples had the least (P<0.01). Sheep diet supplementation with different oils, constituting up to 3% of their diets, resulted in changes in the FA composition of milk and the subcutaneous and intramuscular fat of suckling lambs, but did not affect either milk production or lamb performance.  相似文献   

13.
Forty Large White pigs were fed from 30kg to 103kg body mass on diets supplemented with 6% of pure high-oleic sunflower oil (HO) or HO plus increasing amounts of partially hydrogenated rape seed oil (HR; 1.85%, 3.70%, 5.55%), containing high levels of j 6 to j 11 C 18:1 trans fatty acid isomers. Increasing dietary C 18: trans fatty acids resulted in a linear increase in C 18:1 trans fatty acids and conjugated linoleic acid (cis-9, trans-11 CLA) in backfat (BF) as well as in neutral lipids (NL) and phospholipids (PL) of M. long. dorsi. Thus, the rate of bioconversion of trans vaccenic acid (TVA) into CLA and incorporation of C 18:1 trans and CLA into pig adipose tissue was not limited up to 25g total C 18:1 trans fatty acids including 3.3g of TVA perkg feed. BF was higher in C 18:1 trans fatty acids and CLA than M. long. dorsi NL and PL. In BF and NL the sum of saturated fatty acids (SFA) increased with increasing dietary amounts of HR, while in PL SFA were reduced. Thus, according to their physical properties, C 18:1 trans fatty acids partly replaced SFA in PL. Firmness of backfat was also significantly increased (P<0.05) with increasing amounts of HR in feed.  相似文献   

14.
This experiment studied the effect of a modest difference in diet structure value (SV) on milk conjugated linoleic acid (CLA) contents of cows fed diets supplemented with extruded linseed, in situations where the diets provided enough SV and therefore did not induce milk fat depression. Six lactating Holstein cows were used in a crossover design with two treatments ('SV 1.50' and 'SV 1.73') and two periods of 21 days. The 'SV 1.50' diet contained 59% maize silage, 13% soya bean meal, 13% sugar beet pulp and 14% Nutex Compact (containing 56% extruded linseed) (dry matter (DM) basis) and was offered as a restricted total mixed ration. For the 'SV 1.73' diet, 8% wheat straw (DM basis) was added to the 'SV 1.50' diet as an additional structure source. The two diets had a forage-to-concentrate ratio of 59 : 41 and 62 : 38. The inclusion of straw in the diet resulted in an additional intake of NDF (+1110 g/day), which accounted for 90% of the additional intake of OM, whereas additional intakes of the other nutrients were minor. Milk yield and composition did not differ among treatments. The inclusion of straw in the diet did not affect the milk levels of t10-18:1, 18:2n-6, c9-16:1, c9-18:1, c11-18:1, 6:0, 8:0, 20:4 and 20:5. It decreased the milk levels of c9,t11-CLA (2.13% v. 3.03% of fatty acids (FA) reported, P < 0.001), t11-18:1 (4.99% v. 7.10% of FA reported, P < 0.001), 18:3n-3, t9-16:1 and t9-18:1, while it increased the milk levels of 6:0-14:0 (20.90% v. 19.69% of FA reported, P < 0.01), 16:0 (26.55% v. 25.25% of FA reported, P < 0.01), 18:0 (13.54% v. 12.59% of FA reported, P < 0.001), 17:0, 20:0 and 22:5. Regarding the ratio between FA, the inclusion of straw increased the 18:0/total C18 FA ratio (37.74% v. 32.07%, P < 0.001), whereas it decreased the total trans-C18 FA/total C18 FA ratio (15.46% v. 20.34%, P < 0.001), the t11-18:1/total C18 FA ratio (13.70% v. 17.95%, P < 0.01) and the c9,t11-CLA/total C18 FA ratio (5.82% v. 7.64%, P < 0.001). We conclude from this experiment that even a modest increase in SV to a diet supplemented with extruded linseed, yet already providing enough SV, alters the rumen lipid metabolism and, hence, CLA levels in milk fat.  相似文献   

15.
The study aimed to examine effects of supplemented conjugated linoleic acids (CLA) to periparturient cows receiving different concentrate proportions ante partum (a.p.) to investigate CLA effects on lipid mobilisation and metabolism. Compared to adapted feeding, a high-concentrate diet a.p. should induce a ketogenic metabolic situation post partum (p.p.) to better understand how CLA works. Sixty-four pregnant German Holstein cows had ad libitum access to partial mixed rations 3 weeks prior to calving until day 60 p.p. Ante partum, cows received control fat (CON) or a CLA supplement at 100 g/d, either in a low-concentrate (CON-20, CLA-20) or high-concentrate diet (CON-60, CLA-60). Post partum, concentrate proportion was adjusted, while fat supplementation continued. After day 32 p.p., half of the animals of CLA-groups changed to CON supplementation (CLA-20-CON, CLA-60-CON). A ketogenic metabolic situation p.p. was not achieved and therefore impacts of CLA could not be examined. Live weight, milk yield and composition, blood parameters remained unaffected by the treatments. Only a slightly reduced milk fat yield (not significant) was recorded for Group CLA-20. The proportion of trans-10,cis-12 (t10,c12) CLA in milk fat was significantly increased in CLA-groups compared to CON-groups. With the exception of a reversible CLA effect on milk fat in Group CLA-20, no post-treatment effects occurred. Dry matter intake (DMI) of Group CLA-60 was highest before calving, resulting in a significantly improved estimated energy balance after calving. Ante partum, net energy intakes were significantly increased in high-concentrate groups. Overall, supplemented CLA preparation did not relieve metabolism and lipid mobilisation of early lactating cows. But feeding CLA in a high-concentrate diet a.p. seems to increase DMI and thereby improve the energy balance of cows immediately after calving.  相似文献   

16.
The aim of this study was to evaluate the effects on dairy performance and milk fatty acid (FA) composition of (i) supplementation with extruded linseed (EL), (ii) supplementation with synthetic or natural antioxidants, namely vitamin E and plant extracts rich in polyphenols (PERP), (iii) cow breed (Holstein v. Montbéliarde) and (iv) time of milking (morning v. evening). After a 3-week pre-experimental period 24 lactating cows (12 Holstein and 12 Montbéliarde) were divided up into four groups of six cows: the first group received a daily control diet (diet C) based on maize silage. The second group received the same diet supplemented with EL (diet EL, fat level approximately 5% of dietary dry matter (DM)). The third group received the EL diet plus 375 IU/kg diet DM of vitamin E (diet ELE). The fourth group received the ELE diet plus 10 g/kg diet DM of a PERP mixture (diet ELEP). Compared with the diet C, feeding EL-rich diets led to lower concentrations of total saturated FA (SFA) and higher concentrations of stearic and oleic acids, each trans and cis isomer of 18:1 (except c12-18:1), non-conjugated isomers of 18:2, some isomers (c9t11-, c9c11- and t11t13-) of conjugated linoleic acid (CLA), and 18:3n-3. The vitamin E supplementation had no effect on milk yield, milk fat or protein percentage and only moderate effects on milk concentrations of FA (increase in 16:0, decreases in 18:0 and t6/7/8-18:1). The addition of PERP to vitamin E did not modify milk yield or composition and slightly altered milk FA composition (decrease in total saturated FA (SFA) and increase in monounsaturated FA (MUFA)). The minor effects of vitamin E may be partly linked to the fact that no milk fat depression occurred with the EL diet. During both periods the Holstein cows had higher milk production, milk fat and protein yields, and milk percentages of 4:0 and 18:3n-3, and lower percentages of odd-branched chain FA (OBCFA) than the Montbéliarde cows. During the experimental period the Holstein cows had lower percentages of total cis 18:1, and c9,c11-CLA, and higher percentages of 6:0, 8:0, t12-, t16/c14- and t13/14-18:1, and 18:2n-6 than Montbéliarde cows because of several significant interactions between breed and diet. Also, the total SFA percentage was higher for morning than for evening milkings, whereas those of MUFA, total cis 18:1, OBCFA and 18:2n-6 were lower. Extruded linseed supplementation had higher effect on milk FA composition than antioxidants, breed or time of milking.  相似文献   

17.
18.
Supplementing dairy cow diets with oilseed preparations has been shown to replace milk saturated fatty acids (SFA) with mono- and/or polyunsaturated fatty acids (MUFA, PUFA), which may reduce risk factors associated with cardio-metabolic diseases in humans consuming milk and dairy products. Previous studies demonstrating this are largely detailed, highly controlled experiments involving small numbers of animals, but in order to transfer this feeding strategy to commercial situations further studies are required involving whole herds varying in management practices. In experiment 1, three oilseed supplements (extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) and milled rapeseed (MR)) were included in grass silage-based diets formulated to provide cows with ~350 g oil/day, and compared with a negative control (Control) diet containing no supplemental fat, and a positive control diet containing 350 g/cow per day oil as calcium salt of palm oil distillate (CPO). Diets were fed for 28-day periods in a 5×4 Latin Square design, and milk production, composition and fatty acid (FA) profile were analysed at the end of each period. Compared with Control, all lipid supplemented diets decreased milk fat SFA concentration by an average of 3.5 g/100 g FA, by replacement with both cis- and trans-MUFA/PUFA. Compared with CPO, only CPLO and MR resulted in lower milk SFA concentrations. In experiment 2, 24 commercial dairy farms (average herd size±SEM 191±19.3) from the south west of the United Kingdom were recruited and for a 1 month period asked to supplement their herd diets with either CPO, EL, CPLO or MR at the same inclusion level as the first study. Bulk tank milk was analysed weekly to determine FA concentration by Fourier Transform mid-IR spectroscopy prediction. After 4 weeks, EL, CPLO and MR all decreased herd milk SFA and increased MUFA to a similar extent (average −3.4 and +2.4 g/100 g FA, respectively) when compared with CPO. Differing responses observed between experiments 1 and 2 may be due in part to variations in farm management conditions (including basal diet) in experiment 2. This study demonstrates the importance of applying experimental research into commercial practice where variations in background conditions can augment different effects to those obtained under controlled conditions.  相似文献   

19.
The aim of this study was to elucidate the effect of dietary supplementation of soybean oil (SO) and hydrogenated palm oil (HPO) on the transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Three lactating and three non-lactating Holstein cows were used in two different 3 × 3 Latin square experiments that included three periods of 21 d. Dietary treatments for lactating cows consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (500 g/d per cow) or HPO (500 g/d per cow). For non-lactating cows, dietary treatments consisted of a basal diet (control; no fat supplement) and fat-supplemented diets containing SO (170 g/d per cow) or HPO (170 g/d per cow). Compared with the control and SO diet, HPO addition increased (p < 0.05) the concentration of C16:0, C18:0, C18:2cis-9,12, C18:3cis-9,12,15 and total saturated and polyunsaturated FA in the plasma of lactating cows. In non-lactating cows, the SO addition increased the plasma concentration of C18:1trans-11. In lactating cows, concentrations of C16:0, C18:0 and total saturated FA were increased (p < 0.05) by HPO addition in the high-density lipoprotein (HDL). Total saturated FA were increased (p < 0.05) by HPO in very-low-density lipoprotein (VLDL). In non-lactating cows, the concentration of C18:0 was increased (p < 0.05) by HPO in HDL, whereas C18:1trans-11 was increased (p < 0.05) by SO in the low-density lipoprotein. Overall, it was found that distribution and transport of FA within the bovine plasma lipoproteins may be influenced by chain length and degree of unsaturation of dietary lipids. Also, the distribution of individual FA isomers such as C18:1trans-11 and C18:2cis-9,trans-11 may vary depending on the physiological state of the cow (lactating or non-lactating), and are increased in plasma (lactating cows) and the HDL (non-lactating cows) when cows are fed SO.  相似文献   

20.
Dairy fat contains high amounts of saturated fatty acids (FA), which are associated with cardiovascular disease (CVD) risk. Manipulation of dairy cows nutrition allows to decrease the saturated FA content of milk fat, and is associated with increases either in conjugated linoleic acid (CLA) and trans-11-C18:1 contents, or in trans-10-C18:1 content. CLA putatively exhibits beneficial properties on CVD risk, whereas trans FA are suspected to be detrimental. The present study compared the effects of a trans-10-C18:1-rich butter (T10 butter), a trans-11-C18:1+CLA-rich butter (T11-CLA butter) and a standard butter (S butter) on lipid parameters linked to the CVD risk and fatty streaks. Thirty-six White New Zealand rabbits were fed one of the three butters (12% of the diet, plus 0.2% cholesterol) for 6 (experiment 1) or 12 (experiment 2) weeks. Liver lipids, plasma lipids and lipoprotein concentrations (experiments 1 and 2) and aortic lipid deposition (experiment 2) were determined. The T10 butter increased VLDL-cholesterol compared with the two others, and total and LDL-cholesterol compared with the T11-CLA butter ( P < 0.05). The T10 butter also increased non-HDL/HDL ratio and aortic lipid deposition compared with the T11-CLA butter ( P < 0.05). The T11-CLA butter non-significantly reduced aortic lipid deposition compared with the S butter, and decreased HDL-cholesterol and increased liver triacyglycerols compared with the two other butters (< 0.05). These results suggest that, compared with the S butter, the T10 butter had detrimental effects on plasma lipid and lipoprotein metabolism in rabbits, whereas the T11-CLA butter was neutral or tended to reduce the aortic lipid deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号