首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The objective was to evaluate the effect of microbial phytase (1250 FTU/kg diet with 88% dry matter (DM)) on apparent total tract digestibility (ATTD) of phosphorus (P) in pigs fed a dry or soaked diet. Twenty-four pigs (65±3 kg) from six litters were used. Pigs were housed in metabolism crates and fed one of four diets for 12 days; 5 days for adaptation and 7 days for total, but separate collection of feces and urine. The basal diet was composed of wheat, barley, maize, soybean meal and no mineral phosphate. Dietary treatments were: basal dry-fed diet (BDD), BDD with microbial phytase (BDD+phy), BDD soaked for 24 h at 20°C before feeding (BDS) and BDS with microbial phytase (BDS+phy). Supplementation of microbial phytase increased ATTD of DM and crude protein (N×6.25) by 2 and 3 percentage units (P<0.0001; P<0.001), respectively. The ATTD of P was affected by the interaction between microbial phytase and soaking (P=0.02). This was due to a greater increase in ATTD of P by soaking of the diet containing solely plant phytase compared with the diet supplemented with microbial phytase: 35%, 65%, 44% and 68% for BDD, BDD+phy, BSD and BSD+phy, respectively. As such, supplementation of microbial phytase increased ATTD of P in the dry-fed diet, but not in the soaked diet. The higher ATTD of P for BDS compared with BDD resulted from the degradation of 54% of the phytate in BDS by wheat and barley phytases during soaking. On the other hand, soaking of BDS+phy did not increase ATTD of P significantly compared with BDD+phy despite that 76% of the phytate in BDS+phy was degraded before feeding. In conclusion, soaking of BDS containing solely plant phytase provided a great potential for increasing ATTD of P. However, this potential was not present when microbial phytase (1250 FTU/kg diet) was supplemented, most likely because soaking of BDS+phy for 24 h at 20°C did not result in a complete degradation of phytate before feeding.  相似文献   

2.

The efficacy of Aspergillus niger (APhy) phytase, Trichoderma reesei (TPhy) phytase and acid phosphatase (TAcPh) preparations in improving the utilization of phytin‐phosphorus in the maize‐soybean meal (SBM) or barley‐SBM (800: 200g kg‐1) diets was studied in two separate digestibility and balance trials with ten growing pigs using 5×5 Latin square designs. The positive control diet contained a total phosphorus (P) of 6.5gkg‐1, while the negative control as well as the APhy, TPhy and TAcPh supplemented diets which did not contain additional inorganic‐P, had a total P of 4.1 g kg‐1. The APhy and TPhy supplements provided phytase activity of 1000 PU g‐1 together with AcPh of 8000HFUg‐1. TAcPh at a level of 8000 HFUg‐1 was the only addition to one diet. The intrinsic phytase activity of barley was 355 PU g‐1 while maize and soybean meal showed no phytase activity. Phytase supplements of the APhy and TPhy sources increased ash digestibility in both diets but had only a minor effect on nitrogen utilization. The addition of phytase improved absorption of P by 21 %‐units in barley‐SBM diet and 29%‐units in maize‐SBM diet, without any difference between the two phytase sources. The retained P in diets with phytase was higher than in diets without phytase, 4.4 (APhy), 4.5 (TPhy) vs. 2.9gd‐1 in barley‐SBM‐diets and 3.7 (APhy), 4.0 (TPhy) vs. 1.8gd‐1 in maize‐SBM‐diets. No difference was found between the two sources of phytase. TAcPh without additional phytase did not show any effect on P absorption or retention. Ca absorption and retention were improved due to the phytase treatments. Supplementing pig diets with either APhy or TPhy sources seems to be equally effective in enhancing the availability of phytate‐P. Consequently, these supplements can reduce the P‐excretion of pigs by 32–40% as compared with the diet supplemented with inorganic‐P.  相似文献   

3.
The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R2=0.40, P<0.001 without microbial phytase and R2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.  相似文献   

4.
Zinc (Zn) is essential for swine and poultry and native Zn concentrations in feedstuffs are too low to meet their Zn requirement. Dietary Zn bioavailability is affected by phytate, phytase and Zn supplemented in organic form is considered as more bioavailable than inorganic sources. A meta-analysis using GLM procedures was processed using broiler and piglet databases to investigate, within the physiological response of Zn, (1) the bioavailability of inorganic and organic Zn sources (Analysis I); (2) the bioavailability of native and inorganic Zn dependent from dietary phytates, vegetal and supplemental phytase activity (Analysis II). Analysis I: the bioavailability of organic Zn relative to inorganic Zn sources ranged, depending on the variable, from 85 to 117 never different from 100 (P > 0.05). The coefficients of determination of the regressions were 0.91 in broilers and above 0.89 in piglets. Analysis II: in broilers, bone Zn was explained by supplemental Zn (linear and quadratic, P < 0.001) and by supplemental phytase (linear, P < 0.001). In piglets, the interaction between dietary Zn and phytates/phytases was investigated by means of a new variable combining dietary phytic phosphorus (PP) and phytase activity. This new variable represents the remaining dietary PP after its hydrolysis in the digestive tract, mainly due to phytase and is called non-hydrolyzed phytic phosphorus (PPNH). Bone Zn was increased with native Zn (P < 0.001), but to a lower extent in high PP or low phytase diets (ZNN × PPNH, P < 0.001). In contrast, the increase in bone zinc in response to supplemental Zn (P < 0.001) was not modulated by PPNH (P > 0.05). The coefficients of determination of the regressions were 0.92 in broilers and above 0.92 in piglets. The results from the two meta-analyses suggest that (1) broilers and piglets use supplemented Zn, independent from Zn source; (2) broiler use native Zn and the use is slightly enhanced with supplemental phytase; (3) however, piglets are limited in the use of native Zn because of the antagonism of non-hydrolyzed dietary phytate. This explains the higher efficacy of phytase in improving Zn availability in this specie.  相似文献   

5.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

6.
The experiment was conducted to evaluate the sparing effect of microbial phytase on the need for dietary zinc supplementation in chicks. A maize–soya-bean meal basal diet, containing 33 mg of zinc and 16 mg of copper per kg, supplemented with 0, 6, 12, 18, 24, 30 or 60 mg of zinc as sulphate per kg or with 250, 500, 750 or 1000 units (FTU) of microbial phytase (3-phytase from Aspergillus niger, Natuphos®) per kg was given to 1-day-old chicks for 20 days. Sixteen chicks placed in individual cages were assigned to each diet except the unsupplemented basal diet which was assigned to 32 cages. Actual range of phytase supplementation was 280 to 850 FTU per kg diet. Growth performance was not affected by microbial phytase. Chicks given the unsupplemented basal diet and the basal diet supplemented with 60 mg of zinc per kg displayed similar performance. Bone weight, bone ash, liver weight and liver dry matter were independent (P > 0.1) of zinc and phytase supplementations. Plasma, bone and liver zinc concentrations increased linearly (P < 0.001) and quadratically (P < 0.001; P < 0.001 and P < 0.05, respectively) with zinc added. Plasma zinc tended to increase linearly (P = 0.07) and bone zinc increased linearly (P < 0.01) with phytase added but no quadratic response was detected (P > 0.1). Liver zinc was unresponsive to phytase added (P > 0.1). Liver copper decreased linearly (P < 0.001) and quadratically (P < 0.01) with zinc supplementation. Mathematical functions were fitted to the responses of plasma and bone zinc to zinc and phytase added and used to calculate zinc equivalency values of phytase. The models included a linear plateau response to zinc added and a linear response to phytase added. In diets without phytase, plasma and bone zinc concentrations were maximised for a dietary zinc concentration of 55 and 51 mg/kg, respectively. Over the range of 280 to 850 FTU, 100 FTU was equivalent to 1 mg of zinc as sulphate. Consequently, in a maize–soya-bean meal chicken diet formulated to contain 60 mg zinc per kg, zinc ingested, and in turn, zinc excreted may be reduced by around 10% if the diet contains 500 FTU as Natuphos® per kg.  相似文献   

7.
A periplasmatic phytase from a bacterium isolated from Malaysian waste water was purified about 173-fold to apparent homogeneity with a recovery of 10% referred to the phytase activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 65°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be K M = 0.15 mmol/l and k cat = 1164 s−1 at pH 4.5 and 37°C. The purified enzyme was shown to be highly specific. Among the phosphorylated compounds tested, phytate was the only one which was significantly hydrolysed. Some properties such as considerable activity below pH 3.0, thermal stability and resistance to pepsin make the enzyme attractive for an application as a feed supplement.  相似文献   

8.
Five sources of phytases were used to study their biochemical characteristics. Phytase E was from an original Escherichia coli (E. coli), phytase PI and PG from the transformed Pichia pastoris (P. pastoris) with phytase gene of E. coli, phytase B and R from Aspergillus niger (A. niger). The results showed that the relative phytase activities had no significant changes when temperature was below 60 °C (P>0.05), and then decreased significantly with temperature increasing (P<0.01). The fungal phytase with the phytase gene from A. niger had the higher thermostability than the bacterial phytase with the phytase gene from E. coli; i.e. at 70 °C, 27–58% of phytase activity (compared with 30 °C) was retained for the bacterial phytase, and 73–96% for the fungal phytase; at 90 °C, 20–47% was retained for the bacterial phytase, and 41–52% for the fungal phytase, especially for the most thermostable phytase R (P<0.01). The optimum pH ranges were 3.0–4.5 for the bacterial phytases and 5.0–5.5 for the fungal phytases (P<0.01). When pH levels were 1, 7 and 8, only 3–7% of phytase activity (compared with the maximum phytase activity at a pH point) was retained for both bacterial and fungal phytases. The amount of inorganic P released from soybean meal was significantly increased when the levels of phytase activity in the soybean meal increased from 0 to 1.0 U/g soybean meal (P<0.01), except for phytase PI. The maximum P released was obtained at 1 U/g soybean meal for all five kinds of phytases (P<0.01). The most economical phytase concentration for P released was 0.25 U/g for phytase PI and B, and 0.50–1.0 U/g for phytase PG, E and R. In addition, the linear and non-linear regression models were established to estimate phytase activity and its characteristics very easily and economically.  相似文献   

9.
A phytase with high activity at neutral pH and typical water temperatures (∼25°C) could effectively hydrolyze phytate in aquaculture. In this study, a phytase-producing strain, Pedobacter nyackensis MJ11 CGMCC 2503, was isolated from glacier soil, and the relevant gene, PhyP, was cloned using degenerate PCR and thermal asymmetric interlaced PCR. To our knowledge, this is the first report of detection of phytase activity and cloning of phytase gene from Pedobacter. PhyP belongs to beta-propeller phytase family and shares very low identity (∼28.5%) with Bacillus subtilis phytase. The purified recombinant enzyme (r-PhyP) from Escherichia coli displayed high specific activity for sodium phytate of 24.4 U mg−1. The optimum pH was 7.0, and the optimum temperature was 45°C. The K m, V max, and k cat values were 1.28 mM, 71.9 μmol min−1 mg−1, and 45.1 s−1, respectively. Compared with Bacillus phytases, r-PhyP had higher relative activity at 25°C (r-PhyP (>50%), B. subtilis phytase (<8%)) and hydrolyzed phytate from soybean with greater efficacy at neutral pH. These characteristics suggest that r-PhyP might be a good candidate for an aquatic feed additive in the aquaculture industry.  相似文献   

10.
Ruminal degradation of dry matter (DM) and crude protein (CP) in samples of soybean meal (SBM), barley grain (BG) and lucerne hay (LH) were measured by an in situ ruminal technique considering either only the outflow rate of particles from the rumen (kp) or, both kp and rate of particle comminution (kc). The effect of correction for the microbial contamination using an 15N technique was also determined for LH. Degradation and transit studies were completed on three wethers cannulated in the rumen and duodenum and fed a mixed diet of LH and concentrate (2:1 on DM), at an intake level of 50 g DM/kg BW0.75. Transit studies of concentrates and forages were completed with SBM and LH samples marked with Yb and Eu, respectively. Mean values of kc were higher in SBM than in LH (0.357 versus 0.204 h, P < 0.05). The same trend was observed for kp (0.0587 versus 0.0452/h; P < 0.1). Apparent estimates of the proportion of rumen undegraded CP obtained using both rates were 0.884, 0.745 and 0.825 of those obtained using only kp (0.535, 0.247 and 0.303 for SBM, BG and LH, respectively). Differences occurred for SBM and LH (P < 0.01) and for BG (P < 0.05). The pattern of microbial contamination of LH, expressed as a proportion of residual DM or CP, fitted exponential curves with asymptotic values of 0.076 and 0.586, respectively. Correction for microbial contamination reduced (P < 0.05) estimates of undegraded CP from 0.303 to 0.238, which was further reduced to 0.178 (P < 0.01) when the effect of kc was also considered.  相似文献   

11.
A simple and inexpensive high-performance thin-layer chromatography (HPTLC) method for the analysis of inositol mono- to hexakisphosphates on cellulose precoated plates is described. Plates were developed in 1-propanol–25% ammonia solution–water (5:4:1) and substance quantities as low as 100–200 pmol were detected by molybdate staining. Chromatographic mobilities of nucleotides and phosphorylated carbohydrates were also characterized. Charcoal treatment was employed to separate nucleotides from inositol phosphates with similar RF values prior to HPTLC analysis. Practical application of the HPTLC system is demonstrated by analysis of grain extracts from wild type and low-phytate mutant barley as well as phytate degradation products resulting from barley phytase activity.  相似文献   

12.
Probiotics have been demonstrated to promote growth, stimulate immune responses, and improve food safety of poultry. While widely used, their effectiveness is mixed, and the mechanisms through which they contribute to poultry production are not well understood. Microbial phytases are increasingly supplemented in feed to improve digestibility and reduce antinutritive effects of phytate. The microbial origin of these exogenous enzymes suggests a potentially important mechanism of probiotic functionality. We investigated phytate degradation as a novel probiotic mechanism using recombinant Lactobacillus cultures expressing Bacillus subtilis phytase. B. subtilis phyA was codon optimized for expression in Lactobacillus and cloned into the expression vector pTRK882. The resulting plasmid, pTD003, was transformed into Lactobacillus acidophilus, Lactobacillus gallinarum, and Lactobacillus gasseri. SDS-PAGE revealed a protein in the culture supernatants of Lactobacillus pTD003 transformants with a molecular weight similar to that of the B. subtilis phytase. Expression of B. subtilis phytase increased phytate degradation of L. acidophilus, L. gasseri, and L. gallinarum approximately 4-, 10-, and 18-fold over the background activity of empty-vector transformants, respectively. Phytase-expressing L. gallinarum and L. gasseri were administered to broiler chicks fed a phosphorus-deficient diet. Phytase-expressing L. gasseri improved weight gain of broiler chickens to a level comparable to that for chickens fed a control diet adequate in phosphorus, demonstrating proof of principle that administration of phytate-degrading probiotic cultures can improve performance of livestock animals. This will inform future studies investigating whether probiotic cultures are able to provide both the performance benefits of feed enzymes and the animal health and food safety benefits traditionally associated with probiotics.  相似文献   

13.
14.
We assessed the effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Six maize grain (Zea mays) genotypes characterized by differing vitreousness (proportion of vitreous in total endosperm) were ground (3-mm screen; Gr, ground particles, mean particle size (MPS): 526 μm) and cracked with a roller mill using two gap width settings (CS, cracked small particles, MPS: 1360 μm; CL, cracked large particles, MPS: 2380 μm). The ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen was measured on three dry Holstein cows, fitted with rumen, proximal duodenum and terminal ileum cannulas, fed maize silage ad libitum twice daily. The ruminal starch degradability and intestinal digestibility differed among genotypes (P<0.001) and decreased as particle size increased (P<0.001). For the same particle size, starch ruminal degradability decreased (P<0.05) and intestinal digestibility decreased (P<0.002) with vitreousness. Particle size and vitreousness of maize grain are efficient factors for manipulating the amount of starch escaping rumen degradation, but may be limiting for the amount of starch digested in the small intestine.  相似文献   

15.
Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of Pi-fed 14-day-old seedlings were only 1.3–4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg−1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg2+ and Ca2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant−1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant−1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation.  相似文献   

16.
Phytase enzyme is used as a dietary supplement in broiler nutrition to improve phosphorous bioavailability. Phytase deliberates phosphate groups from phytic acid and produces myo-inositol after total dephosphorylation. Myo-inositol is a bioactive compound having beneficial modulatory effects on metabolism in humans. However, it is not well understood if and how phytic acid degradation products, particularly myo-inositol, can modulate metabolism in broiler chicken. The purpose of this study was to investigate effects of dietary supplements of phytase and myo-inositol on the blood plasma metabolome profile of broiler chickens. Broilers were provided a nutrient-adequate control diet or the same diet supplemented with either 3.5 g myo-inositol or 500, 1500 or 3000 units of phytase, per kilogram of feed (grower diet). Broilers were group-housed in floor pens (eight pens per diet) and provided one of the treatment diets for 22 days. Then, blood was collected from one bird per pen, resulting in eight replicated measurements per diet. A targeted metabolomics approach was applied to the heparin plasma. Body weight of the birds was not significantly affected by the treatments. Plasma myo-inositol concentrations were significantly increased by myo-inositol supplementation and phytase supplementation at 500 and 1500 units/kg. Metabolites generally affected by phytase supplementation belonged to the groups of acyl-carnitines, phosphatidylcholines, sphingomyelins, lysophosphatidylcholine, biogenic amines and amino acids. Compared to the control diet, phytase supplements had significantly higher plasma concentrations of kynurenine and creatinine, but lower concentrations of histamine and cis-4-hydroxyproline. Myo-inositol supplementation significantly increased plasma concentrations of dopamine and serotonine. While some metabolites were similarly affected by myo-inositol and phytase supplementation, others were distinctly differently affected. We conclude that myo-inositol, either as a directly added supplement or indirectly released from phytate upon phytase supplementation, can affect specific metabolic pathways. Additional effects found on phytase supplementation may be related to intermediary phytate degradation products. Results are indicative for innovative hypothesis to be tested in future experiments, for instance, with regard to relationships between phytase or myo-inositol supplements and bird immunity or behaviour.  相似文献   

17.
The net photosynthetic rate (P N), the sample room CO2 concentration (CO2S) and the intercellular CO2 concentration (C i) in response to PAR, of C3 (wheat and bean) and C4 (maize and three-colored amaranth) plants were measured. Results showed that photorespiration (R p) of wheat and bean could not occur at 2 % O2. At 2 % O2 and 0 μmol mol?1 CO2, P N can be used to estimate the rate of mitochondrial respiration in the light (R d). The R d decreased with increasing PAR, and ranged between 3.20 and 2.09 μmol CO2 m?2 s?1 in wheat. The trend was similar for bean (between 2.95 and 1.70 μmol CO2 m?2 s?1), maize (between 2.27 and 0.62 μmol CO2 m?2 s?1) and three-colored amaranth (between 1.37 and 0.49 μmol CO2 m?2 s?1). The widely observed phenomenon of R d being lower than R n can be attributed to refixation, rather than light inhibition. For all plants tested, CO2 recovery rates increased with increasing light intensity from 32 to 55 % (wheat), 29 to 59 % (bean), 54 to 87 % (maize) and 72 to 90 % (three-colored amaranth) at 50 and 2,000 μmol m?2 s?1, respectively.  相似文献   

18.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase’s activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60°C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation.  相似文献   

19.
This study had the following objectives: (i) to evaluate the thermoregulatory and behavioral responses of light laying hens supplemented with different types and dosages of phytases in the two day shifts; and (ii) to integrate the thermoregulatory and behavioral responses with performance of these birds raised in a hot environment. 270 light laying hens of the Hy-Line White lineage, with a body weight of 1.60 ± 0.092 kg were distributed in a completely randomized design in a 2 × 2 + 1 factorial model with two types of phytases (bacterial and fungal) and two dosages (450 and 900 FTU), and a control diet. The day shift (morning and afternoon) was considered as a fixed effect in the factorial arrangement. Principal component analysis (PCA), correspondence analysis (CA) and canonical discriminant analysis (CDA) were used. There was no interaction (P > 0.05) between phytases and dosages for thermoregulatory responses. Respiratory rate (RR), cloacal temperature (CT), and surface temperature with feathers (STWF) and featherless (STF) were higher (P < 0.001) in the afternoon. Birds show different thermoregulatory and behavioral responses in the two shifts of the day. We also observed that birds supplemented with bacterial and fungal phytase showed similar thermoregulatory and behavioral responses to the control group in both day shifts. Expression of the “eating” activity was greater in the morning, while the birds remained sitting longer in the afternoon. Egg production was higher (P < 0.001) in birds supplemented with bacterial phytase. The phytase dosages had no effect on thermoregulatory, behavioral or performance responses. Egg production, feed conversion per dozen eggs corresponded to 81.1% of the differences between bacterial and fungal phytase supplementation and group control. Thus, we conclude that: (i) phytase dietary supplementation has no effect on the thermoregulatory responses of laying hens reared in a hot environment; (ii) birds supplemented with bacterial phytase showed higher egg production; and (iii) phytases (450 and 900 FTU) do not interfere with productive, behavioral and thermoregulatory responses.  相似文献   

20.
Phosphorus is an important macronutrient, but its availability in soil is limited. Many soil microorganisms improve the bioavailability of phosphate by releasing it from various organic compounds, including phytate. To investigate the diversity of phytate-hydrolyzing bacteria in soil, we sampled soils of various ecological habitats, including forest, private homesteads, large agricultural complexes, and urban landscapes. Bacterial isolate Pantoea sp. strain 3.5.1 with the highest level of phytase activity was isolated from forest soil and investigated further. The Pantoea sp. 3.5.1 agpP gene encoding a novel glucose-1-phosphatase with high phytase activity was identified, and the corresponding protein was purified to apparent homogeneity, sequenced by mass spectroscopy, and biochemically characterized. The AgpP enzyme exhibits maximum activity and stability at pH 4.5 and at 37°C. The enzyme belongs to a group of histidine acid phosphatases and has the lowest Km values toward phytate, glucose-6-phosphate, and glucose-1-phosphate. Unexpectedly, stimulation of enzymatic activity by several divalent metal ions was observed for the AgpP enzyme. High-performance liquid chromatography (HPLC) and high-performance ion chromatography (HPIC) analyses of phytate hydrolysis products identify dl-myo-inositol 1,2,4,5,6-pentakisphosphate as the final product of the reaction, indicating that the Pantoea sp. AgpP glucose-1-phosphatase can be classified as a 3-phytase. The identification of the Pantoea sp. AgpP phytase and its unusual regulation by metal ions highlight the remarkable diversity of phosphorus metabolism regulation in soil bacteria. Furthermore, our data indicate that natural forest soils harbor rich reservoirs of novel phytate-hydrolyzing enzymes with unique biochemical features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号