首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
As short chain fatty acids produced in the forestomach are insufficient to satisfy the energy requirements of the concentrate selecting roe deer (Capreolus capreolus), it is proposed that these animals may have other mechanisms to avoid energy losses due to microbial fermentation. Nutrients bypassing down the ventricular groove (rumen bypass) or ruminal escape of unfermented or partially fermented nutrients may be two alternatives. As metabolic evidence for incomplete fermentation in the forestomach we investigated: (1) the abundance of the sodium-dependent glucose co-transporter (SGLT1) in the duodenum; (2) enzyme activities of maltase, saccharase and alpha-amylase in duodenal and pancreatic tissue; and (3) the proportion of essential, polyunsaturated fatty acids in depot fat samples from ruminants of different feeding type and--for comparison--from animals with a simple stomach. The high abundance of SGLT1, high enzyme activity and the high proportion of polyunsaturated fatty acids in the concentrate selecting ruminants support the hypothesis of rumen bypass or ruminal escape of nutrients in roe deer and reflect differences in nutrient utilization by ruminants that belong to different feeding types.  相似文献   

2.
The n-3 fatty acids contribute to regulation of hepatic fatty acid oxidation and synthesis in adults and accumulate in fetal and infant liver in variable amounts depending on the maternal diet fat composition. Using 2D gel proteomics and matrix-assisted laser desorption/ionization time of flight mass spectrometry, we recently identified altered abundance of proteins associated with glucose and amino acid metabolism in neonatal rat liver with increased n-3 fatty acids. Here, we extend studies on n-3 fatty acids in hepatic metabolic development to targeted gene and metabolite analyses and map the results into metabolic pathways to consider the role of n-3 fatty acids in glucose, fatty acid, and amino metabolism. Feeding rats 1.5% compared with <0.1% energy 18:3n-3 during gestation led to higher 20:5n-3 and 22:6n-3 in 3-day-old offspring liver, higher serine hydroxymethyltransferase, carnitine palmitoyl transferase, and acyl CoA oxidase and lower pyruvate kinase and stearoyl CoA desaturase gene expression, with higher cholesterol, NADPH and glutathione, and lower glycine (P < 0.05). Integration of the results suggests that the n-3 fatty acids may be important in facilitating hepatic metabolic adaptation from in utero nutrition to the postnatal high-fat milk diet, by increasing fatty acid oxidation and directing glucose and amino acids to anabolic pathways.  相似文献   

3.
4.
Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.  相似文献   

5.
Major functions of portal-drained viscera (PDV) and liver of cattle include absorption of digestion products and modification of the body's supply of intermediary metabolites. The disproportionately high metabolic rate of PDV and liver (7-13% of body tissues) is exemplified by their oxygen uptake (40-50% of whole body). Extensive metabolism of glucose, volatile fatty acids and amino acids by PDV modulates nutrient supply from the diet such that most responses to diet or physiological state are a function of level of diet intake. Similarly, blood flow through PDV is highly correlated with energy intake across a range of body weight, physiological state or diet composition. Most common dietary responses in metabolite uptake by PDV are changes in uptake of ammonia and volatile fatty acids, which emphasize the strong energy: nitrogen interrelationship in the rumen and subsequently the rest of the body. The liver (tissue in series with PDV) removes glucose precursors and ammonia from its blood supply as part of its functions in gluconeogenesis, ammonia detoxification and urea synthesis. The liver also alters amounts and proportions of amino acids supplied by PDV. Accountable percentages of metabolizable energy from net PDV supply include: organic acids, 41-59%; amino acids, 5-13%; and heat energy (from oxygen uptake), 11-22%.  相似文献   

6.
Fertility in dairy cows has been declining for the past three decades. Genetic selection for increased milk production has been associated with changes in key metabolic hormones (growth hormone, insulin, IGF and leptin) that regulate metabolism by homoeostasis and homeorhesis. These metabolic hormones, particularly insulin, provide signals to the reproductive system so that regulation of ovarian function is coordinated with changes in metabolic status. Studies have shown, for example, that increasing circulating insulin concentrations during the early post partum period can advance the resumption of oestrous cycles by enhancing follicular growth. However, high concentrations of insulin can be detrimental to the developmental competence of oocytes, which is also influenced by the supply of fatty acids at the systemic level and at the ovarian level. Insulin status is also associated with the incidence and characteristics of abnormal ovarian cycles. These changes can occur without significant variation in circulating gonadotrophin concentrations. This suggests that additional factors, such as peripheral metabolites, metabolic hormones and locally produced growth factors, may have a modulating role. Recent evidence has demonstrated that ovarian responses to metabolic signals and nutrient profile vary according to the stage of the reproductive cycle. Improved understanding of this multifactorial process enables nutrition to be matched to genotype and milk production, with a positive impact on pregnancy rate.  相似文献   

7.
In this review we will focus on external factors that may modify energy metabolism in human skeletal muscle cells (myotubes) and the ability of the myotubes to switch between lipid and glucose oxidation. We describe the metabolic parameters suppressibility, adaptability and substrate-regulated flexibility, and show the influence of nutrients such as fatty acids and glucose (chronic hyperglycemia), and some pharmacological agents modifying nuclear receptors (PPAR and LXR), on these parameters in human myotubes. Possible cellular mechanisms for changes in these parameters will also be highlighted.  相似文献   

8.
In ruminants, dietary lipids are extensively hydrogenated by rumen micro-organisms, and the extent of this biohydrogenation is a major determinant of long-chain fatty acid profiles of animal products (milk, meat). This paper reports on the duodenal flows of C18 fatty acids and their absorption in the small intestine, using a meta-analysis of a database of 77 experiments (294 treatments). We established equations for the prediction of duodenal flows of various 18-carbon (C18) fatty acids as a function of the intakes of their precursors and other dietary factors (source and/or technological treatment of dietary lipids). We also quantified the influence of several factors modifying rumen metabolism (pH, forage : concentrate ratio, level of intake, fish oil supplementation). We established equations for the apparent absorption of these fatty acids in the small intestine as a function of their duodenal flows. For all C18 unsaturated fatty acids, apparent absorption was a linear function of duodenal flow. For 18:0, apparent absorption levelled off for high duodenal flows. From this database, with fatty acid flows expressed in g/kg dry matter intake, we could not find any significant differences between animal categories (lactating cows, other cattle or sheep) in terms of rumen metabolism or intestinal absorption of C18 fatty acids.  相似文献   

9.
10.
11.
Developing embryos of Brassica napus accumulate both triacylglycerols and proteins as major storage reserves. To evaluate metabolic fluxes during embryo development, we have established conditions for stable isotope labeling of cultured embryos under steady-state conditions. Sucrose supplied via the endosperm is considered to be the main carbon and energy source for seed metabolism. However, in addition to 220 to 270 mM carbohydrates (sucrose, glucose, and fructose), analysis of endosperm liquid revealed up to 70 mM amino acids as well as 6 to 15 mM malic acid. Therefore, a labeling approach with multiple carbon sources is a precondition to quantitatively reflect fluxes of central carbon metabolism in developing embryos. Mid-cotyledon stage B. napus embryos were dissected from plants and cultured for 15 d on a complex liquid medium containing (13)C-labeled carbohydrates. The (13)C enrichment of fatty acids and amino acids (after hydrolysis of the seed proteins) was determined by gas chromatography/mass spectrometry. Analysis of (13)C isotope isomers of labeled fatty acids and plastid-derived amino acids indicated that direct glycolysis provides at least 90% of precursors of plastid acetyl-coenzyme A (CoA). Unlabeled amino acids, when added to the growth medium, did not reduce incorporation of (13)C label into plastid-formed fatty acids, but substantially diluted (13)C label in seed protein. Approximately 30% of carbon in seed protein was derived from exogenous amino acids and as a consequence, the use of amino acids as a carbon source may have significant influence on the total carbon and energy balance in seed metabolism. (13)C label in the terminal acetate units of C(20) and C(22) fatty acids that derive from cytosolic acetyl-CoA was also significantly diluted by unlabeled amino acids. We conclude that cytosolic acetyl-CoA has a more complex biogenetic origin than plastidic acetyl-CoA. Malic acid in the growth medium did not dilute (13)C label incorporation into fatty acids or proteins and can be ruled out as a source of carbon for the major storage components of B. napus embryos.  相似文献   

12.
Ruminant meat is an important source of nutrients and is also of high sensory value. However, the importance and nature of these characteristics depend on ruminant nutrition. The first part of this review is focused on biochemical and dietetic value of this meat. It offers a panel of quantitative and qualitative contributions, especially through its fatty acids characteristics. Since saturated and trans-monounsaturated fatty acids are considered as harmful to human health, their amount in muscles can be reduced by increasing the proportions of dietary polyunsaturated fatty acids (PUFA) absorbed by the animals. On the contrary, some fatty acids (n-6 and n-3 PUFA, conjugated linoleic acid) specifically incorporated in muscle tissues would play a favourable role in the prevention or reduction of major diseases in human (cancers, atherosclerosis, obesity) and therefore be recommended. The second part of this review treats different aspects of the sensorial qualities of meat. Skeletal muscle structure and its biochemical components influence muscle transformation to meat and sensorial qualities including tenderness, colour, flavour and juiciness. This paper shows how nutrition can influence, in ruminants, metabolic activity as well as muscle structure and composition, and thereby affect meat quality.  相似文献   

13.
We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.  相似文献   

14.
Lin S  Yang Z  Liu H  Tang L  Cai Z 《Molecular bioSystems》2011,7(5):1537-1548
High-fructose diet-fed rats as one of the insulin resistant models was used widely for understanding the mechanisms of type 2 diabetes mellitus. Systems-level metabolic profiling of the rat model, however, has not been deciphered clearly. To address this issue, mass spectrometry-based metabolomics was employed to unlock the metabolic snapshots of the oral glucose tolerance test (oGTT) effect in either healthy or diabetic rats, as well as to delineate the metabolic signatures in tissues of rats fed with high-fructose diet. Several differentiating metabolites were highlighted to reveal the metabolic perturbation of the oGTT effects in healthy and diabetic rats, which involved amino acid biosynthesis, polyunsaturated fatty acids, phospholipids and purine metabolism. Surprisingly, the patterns of relationships for the metabolic phenotypes by using data mining revealed that glucose ingestion might induce the healthy group to display its trajectory towards diabetic status, while only a very slight influence was observed on the high-fructose diet-fed rats 120 min after glucose ingestion. The data treatment for liver, skeletal muscle and brain tissues suggested that oxidative stress, such as lipid peroxidation and the declined antioxidant, the elevated amino acids and the perturbation of fatty acids, were caused by the high-fructose diet in liver and skeletal muscle tissues. On the other hand, the up-regulation in purine biosynthesis and the decreased concentrations for amino acids were observed in the cerebral cortex and hippocampus tissues. Collectively, the obtained results might provide a new insight not only for the impairment of glucose tolerance but also for the dietary style in rats.  相似文献   

15.
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.  相似文献   

16.
Regulation of mammalian translation factors by nutrients.   总被引:13,自引:0,他引:13  
Protein synthesis requires both amino acids, as precursors, and a substantial amount of metabolic energy. It is well established that starvation or lack of nutrients impairs protein synthesis in mammalian cells and tissues. Branched chain amino acids are particularly effective in promoting protein synthesis. Recent work has revealed important new information about the mechanisms involved in these effects. A number of components of the translational machinery are regulated through signalling events that require the mammalian target of rapamycin, mTOR. These include translational repressor proteins (eukaryotic initiation factor 4E-binding proteins, 4E-BPs) and protein kinases that act upon the small ribosomal subunit (S6 kinases). Amino acids, especially leucine, positively regulate mTOR signalling thereby relieving inhibition of translation by 4E-BPs and activating the S6 kinases, which can also regulate translation elongation. However, the molecular mechanisms by which amino acids modulate mTOR signalling remain unclear. Protein synthesis requires a high proportion of the cell's metabolic energy, and recent work has revealed that metabolic energy, or fuels such as glucose, also regulate targets of the mTOR pathway. Amino acids and glucose modulate a further important regulatory step in translation initiation, the activity of the guanine nucleotide-exchange factor eIF2B. eIF2B controls the recruitment of the initiator methionyl-tRNA to the ribosome and is activated by insulin. However, in the absence of glucose or amino acids, insulin no longer activates eIF2B. Since control of eIF2B is independent of mTOR, these data indicate the operation of additional, and so far unknown, regulatory mechanisms that control eIF2B activity.  相似文献   

17.
Substrates of Energy Metabolism of the Pituitary and Pineal Glands   总被引:5,自引:5,他引:0  
The capability of the neurohypophysis, the adenohypophysis, and the pineal gland to oxidize nonesterified fatty acids and glucose as energy sources was studied in vivo. Fed and 48-h-starved rats had catheters placed in their femoral vessels. After they became conscious, an intravenous injection of one of the following was given: [1-14C]acetate, [1-14C]octanoate, [1-14C]-palmitate, or [2-14C]glucose. After 5 min the rats were sacrificed. These metabolites produce [14C]acetyl-CoA within the mitochondria when they are oxidized as metabolic fuels. On passage through the Krebs cycle a considerable portion of the 14C is trapped in large amino acid pools closely associated with the Krebs cycle; the appearance of 14C in these amino acids was taken as evidence of oxidation. As expected, brain structures behind the blood-brain barrier (cerebral cortex and caudate) showed considerable labeling of Krebs cycle-associated amino acids in both nutritional states when [2-14C]glucose was the substrate. Surprisingly, however, no label was detected in amino acids of the neurohypophysis or the pineal gland in starved rats and very little in fed rats. On the other hand, 14C from acetate and palmitate was extensively incorporated into amino acids of the pineal gland and the neurohypophysis, while little 14C labeling was found in the cerebral cortex and the caudate. Octanoate, which passes the blood-brain barrier readily, labeled amino acids of all tissues. The experiments demonstrated conclusively that the neural structures studied, which have no blood-brain barrier, do not rely heavily upon glucose as a fuel for oxidative energy metabolism, in contrast to the rest of the brain. The results also showed that nonesterified fatty acids may supply at least some of their energy requirements.  相似文献   

18.
游离脂肪酸受体蛋白研究进展   总被引:3,自引:0,他引:3  
游离脂肪酸不仅是人和动物体的一种重要能量来源,也是一种重要的信号分子。最近研究表明,游离脂肪酸受体蛋白在维持机体内的葡萄糖稳衡、脂肪形成、白细胞功能等生理过程中都有重要的作用,对于调控人或动物的营养代谢及疾病发生具有重要生理意义。  相似文献   

19.
During the last few years, animal nutrition has been confronted with genetically modified organisms (GMO), and their significance will increase in the future.

The study presents investigations on the substantial equivalence of the transgenic Bt (Bacillus thuringiensis) corn and the corresponding nontransgenic hybrid Cesar and parameters of nutrition physiology such as digestibility and energy content for poultry, pigs and ruminants. The results of the analysed corn samples as well as of the silage samples illustrated substantial equivalence in all investigated ingredients, such as crude nutrients, amino acids, fatty acids, minerals and non‐starch polysaccharides. The results of the experiments using poultry, pigs, wethers and fattening bulls were not influenced by the genetic modification of corn. The determined values for the digestibilities and the energy contents for poultry, pigs and wethers were not affected by the used corn variety. Neither the examined parameters of the fattening experiments with bulls nor the slaughter results showed any significant differences between the bulls fed on silages made from the nontransgenic or transgenic corn.  相似文献   

20.
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号