首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Among soil microorganisms, yeasts have received little attention as biocontrol agents of soil-borne fungal plant pathogens in comparison to bacterial, actinomycetes, and filamentous fungal antagonists. The mechanisms of action of potential antagonism by yeasts in relation to soil-borne fungal plant pathogens are expected to be similar to those involved with pathogens of aerial parts of the plant, including leaves and fruits. Several taxa of yeasts have been recorded as endophytes in plants, with a small proportion recorded to promote plant growth. The ability of certain taxa of yeasts to multiply rapidly, to produce antibiotics and cell wall-degrading enzymes, to induce resistance of host tissues, and to produce plant growth regulators indicates the potential to exploit them as biocontrol agents and plant growth promoters. More than ten genera of yeasts have been used to control postharvest diseases, especially of fruits. Suppression of classes of fungal pathogens of fruits and foliage that are similar to those associated with soil-borne fungal root pathogens, strongly suggests that yeasts also have potential for the biological control of diseases caused by soil-borne fungal plant pathogens, as is evident in reports of certain yeasts in suppressing some soil-borne fungal plant pathogens. This review explores the potential of soil yeasts to suppress a wider range of soil-borne fungal plant pathogens and to promote plant growth.  相似文献   

2.
木霉菌防治植物真菌病害研究进展   总被引:9,自引:0,他引:9  
木霉菌是一种重要的植物病害生防因子,尤其在防治植物病原真菌病害中一直受到极大的关注。木霉菌依靠其菌株在包括趋向生长、识别、接触、缠绕与穿透等步骤的真菌寄生过程中分泌产生的几丁质酶、葡聚糖酶、纤维素酶、蛋白酶等一系列细胞壁降解酶,进行重寄生作用,拮抗其他植物病原菌,行使其生防功能。我们简要概述了木霉菌的种类、拮抗对象、抑菌机制、诱导抗性、促生作用、基于分子生物学的转基因工程研究,以及木霉菌在植物病原真菌生物防治中的应用。  相似文献   

3.
Biocontrol mechanisms of Trichoderma strains.   总被引:8,自引:0,他引:8  
The genus Trichoderma comprises a great number of fungal strains that act as biological control agents, the antagonistic properties of which are based on the activation of multiple mechanisms. Trichoderma strains exert biocontrol against fungal phytopathogens either indirectly, by competing for nutrients and space, modifying the environmental conditions, or promoting plant growth and plant defensive mechanisms and antibiosis, or directly, by mechanisms such as mycoparasitism. These indirect and direct mechanisms may act coordinately and their importance in the biocontrol process depends on the Trichoderma strain, the antagonized fungus, the crop plant, and the environmental conditions, including nutrient availability, pH, temperature, and iron concentration. Activation of each mechanism implies the production of specific compounds and metabolites, such as plant growth factors, hydrolytic enzymes, siderophores, antibiotics, and carbon and nitrogen permeases. These metabolites can be either overproduced or combined with appropriate biocontrol strains in order to obtain new formulations for use in more efficient control of plant diseases and postharvest applications.  相似文献   

4.
Plant diseases, caused by various microorganisms, including viruses, bacteria, fungi, protozoa and nematodes, affect agricultural practices and result in significant crop losses. Fungal pathogens are the major cause of plant diseases and infect most plants. Agrochemicals play a significant role in plant disease management to ensure a sustainable and productive agricultural system. However, the intensive use of chemicals has adverse effects on humans and ecosystem functioning and also reduces agricultural sustainability. A sustainable agriculture is achieved through reduction or elimination of fertilizers and agrochemicals, resulting in minimal impact to the environment. Recently, the use of antagonistic endophytes as biocontrol agents is drawing special attention as an attractive option for management of some plant diseases, resulting in minimal impact to the environment. Endophytes that resides asymptomatically within a plant, have the potential to provide a source of candidate strains for potential biocontrol applications. This review addresses biocontrol methods using endophytic fungi such as Colletotrichum, Cladosporium, Fusarium, Pestalotiopsis and Trichoderma species as an attractive option for management of some plant diseases. Potential endophytes are screened in vitro and in vivo to test their antagonistic actions by different mechanisms, including mycoparasitism, production of lytic enzymes and/or antibiotics and induction of plant defenses. Currently, efforts are being made to commercialize these biocontrol agents. A continued research pipeline consisting of screening, in vitro and in vivo testing, biomass production and commercialization of endophytes as biocontrol agents may contribute to sustainable agriculture.  相似文献   

5.
6.
研究了节丛孢Arthrobotrys、单顶孢Monacrosporium和隔指孢Dactylella三个捕食线虫丝孢菌属16个菌株,对水稻立枯丝核菌RhizoctoniasolaniAG1、大豆核盘菌Sclerotiniasclerotiorum、茄科镰刀菌Fusariumsolani和恶疫霉Phytophthoracactorum四种常见土壤植物病原真菌的菌寄生性。结果表明供试菌可以通过弹簧式菌丝圈缠绕、类附着胞结构吸附、简单的菌丝缠绕或者贴附寄主菌丝生长四种方式寄生病原菌。其中,绝大多数菌株对立枯丝核病菌有寄生作用,一些供试真菌对其它三种病原真菌有寄生现象。利用孢子液浸泡法测定了其中5种捕食线虫真菌对核盘菌菌核的寄生能力,显示有较高寄生率。  相似文献   

7.
Rhizospheric and root-associated/endophytic (RAE) bacteria were isolated from tomato plants grown in three suppressive compost-based plant growth media derived from the olive mill, winery and Agaricus bisporus production agro-industries. Forty-four (35 rhizospheric and 9 RAE) out of 329 bacterial strains showed in vitro antagonistic activity against at least one of the soil-borne fungal pathogens, Fusarium oxysporum f.sp. radicis-lycopersici (FORL), F. oxysporum f.sp. raphani, Phytophthora cinnamomi, P. nicotianae and Rhizoctonia solani. The high percentage of total isolates showing antagonistic properties (13%) and their common chitinase and β-glucanase activities indicate that the cell wall constituents of yeasts and macrofungi that proliferate in these compost media may have become a substrate that favours the establishment of antagonistic bacteria to soil-borne fungal pathogens. The selected bacterial strains were further evaluated for their suppressiveness to tomato crown and root rot disease caused by FORL. A total of six rhizospheric isolates, related to known members of the genera Bacillus, Lysinibacillus, Enterobacter and Serratia and one RAE associated with Alcaligenes faecalis subsp. were selected, showing statistically significant decrease of plant disease incidence. Inhibitory effects of extracellular products of the most effective rhizospheric biocontrol agent, Enterobacter sp. AR1.22, but not of the RAE Alcaligenes sp. AE1.16 were observed on the growth pattern of FORL. Furthermore, application of cell-free culture extracts, produced by Enterobacter sp. AR1.22, to tomato roots led to plant protection against FORL, indicating a mode of biological control action through antibiosis.  相似文献   

8.
Several Trichoderma strains have been reported to be effective in controlling plant diseases, and the action of fungal hydrolytic enzymes is considered as the main mechanism involved in the antagonistic process. Strain Trichoderma harzianum T334 is a potential biocontrol agent against plant pathogenic fungi with the ability to produce low levels of proteases constitutively. To improve its fungal antagonistic capacity, mutagenetic program was undertaken for the construction of protease overproducing derivates. The mutant strains were obtained by means of UV-irradiation and were selected for p-fluorophenyl-alanine resistance or altered colony morphology. It was revealed by means of specific chromogenic protease substrates that both trypsin-like and chymotrypsin-like protease secretion was elevated in most of the mutant strains. The profiles of isoenzymes were different between the mutants and the wild-type strain, when examined by gel filtration chromatography. Certain mutants proved to be better antagonists against plant pathogens in in vitro antagonism experiments. This study suggests the possibility of using mutants with improved constitutive extracellular protease secretion against plant pathogenic fungi.  相似文献   

9.
Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis.  相似文献   

10.
Aims:  To elucidate the molecular mechanisms associated with mycoparasitism from Chaetomium cupreum , an effective biocontrol agent with ability against plant pathogenic fungi.
Methods and Results:  One cDNA library was constructed from conditions predicted to resemble mycoparasitic process. A total of 1876 ESTs were generated and assembled into 1035 unigenes. B last X search revealed that 585 unigenes had similarities with sequences available from public databases. Based on the ESTs abundance, MFS monosaccharide transporter was found as the gene expressed at the highest level. A KEGG analysis allowed mapping of 60 metabolic pathways well represented by the glycolysis/gluconeogenesis, d -arginine and ornithine metabolism, and tryptophan metabolism. The genes related to mycoparasitism were detected.
Conclusions:  The results revealed that the cell walls of the fungal pathogen can simulate some aspects of the mycoparasitic interaction between C. cupreum and its targets.
Significance and Impact of the Study:  This is the first report to study genes expression under conditions associated with the mycoparasitic process. The findings contribute to elucidate the molecular mechanisms involved in mycoparasitism and will help to advance our efforts in developing novel strategies for biocontrol of plant fungal diseases.  相似文献   

11.
Suppression of soil-borne plant pathogens with compost has been widely studied. Compost has been found to be suppressive against several soil-borne pathogens in various cropping systems. However, an increase of some diseases due to compost usage has also been observed, since compost is a product that varies considerably in chemical, physical and biotic composition, and, consequently, also in ability to suppress soil borne diseases. New opportunities in disease management can be obtained by the selection of antagonists from suppressive composts. The objective of the present work was to isolate microorganisms from a suppressive compost and to test them for their activity against soil-borne pathogens. A compost from green wastes, organic domestic wastes and urban sludge's that showed a good suppressive activity in previous trials was used as source of microorganisms. Serial diluted suspensions of compost samples were plated on five different media: selective for Fusarium sp., selective for Trichoderma sp., selective for oomycetes, potato dextrose agar (PDA) for isolation of fungi, lysogeny broth (LB) for isolation of bacteria. In total, 101 colonies were isolated from plates and tested under laboratory conditions on tomato seedlings growing on perlite medium in Petri plates infected with Fusarium oxysporum f.sp. radicis-lycopersici and compared to a commercial antagonist (Streptomyces griserovidis, Mycostop, Bioplanet). Among them, 28 showed a significant disease reduction and were assessed under greenhouse condition on three pathosystems: Fusarium oxysporum f.sp. basilica/basil, Phytophthora nicotianae/tomato and Rhizoctonia solani/bean. Fusarium spp. selected from compost generally showed a good disease control against Fusarium wilts, while only bacteria significantly controlled P. nicotianae on tomato under greenhouse conditions. None of the microorganisms was able to control the three soil-borne pathogens together, in particular Rhizoctonia solani. Results confirmed the good suppressive activity of the compost under study against soil-borne pathogens. The selection of antagonists from compost is a promising strategy for the development of new biological control agents against soil-borne pathogens.  相似文献   

12.
Trichoderma/pathogen/plant interaction in pre-harvest food security   总被引:1,自引:0,他引:1  
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.  相似文献   

13.
Groovy times: filamentous pathogen effectors revealed   总被引:3,自引:0,他引:3  
Filamentous microorganisms, such as fungi and oomycetes, secrete an arsenal of effector proteins that modulate plant innate immunity and enable parasitic infection. Deciphering the biochemical activities of effectors to understand how pathogens successfully colonize and reproduce on their host plants became a driving paradigm in the field of fungal and oomycete pathology. Recent findings illustrate a diversity of effector structures and activities, as well as validate the view that effector genes are the target of the evolutionary forces that drive the antagonistic interplay between pathogen and host.  相似文献   

14.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   

15.
AIM: This study was undertaken to isolate Bacillus subtilis strains with biological activity against soil-borne phytopathogenic fungi from the avocado rhizoplane. METHODS AND RESULTS: A collection of 905 bacterial isolates obtained from the rhizoplane of healthy avocado trees, contains 277 gram-positive isolates. From these gram-positive isolates, four strains, PCL1605, PCL1608, PCL1610 and PCL1612, identified as B. subtilis, were selected on the basis of their antifungal activity against diverse soil-borne phytopathogenic fungi. Analysis of the antifungal compounds involved in their antagonistic activity showed that these strains produced hydrolytic enzymes such as glucanases or proteases and the antibiotic lipopeptides surfactin, fengycin, and/or iturin A. In biocontrol trials using the pathosystems tomato/Fusarium oxysporum f.sp. radicis-lycopersici and avocado/Rosellinia necatrix, two B. subtilis strains, PCL1608 and PCL1612, both producing iturin A, exhibited the highest biocontrol and colonization capabilities. CONCLUSIONS: Diverse antagonistic B. subtilis strains isolated from healthy avocado rhizoplanes have shown promising biocontrol abilities, which are closely linked with the production of antifungal lipopeptides and good colonization aptitudes. SIGNIFICANCE AND IMPACT OF THE STUDY: This is one of the few reports dealing with isolation and characterization of B. subtilis strains with biocontrol activity against the common soil-borne phytopathogenic fungi F. oxysporum f.sp. radicis-lycopersici and R. necatrix.  相似文献   

16.
Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.  相似文献   

17.

The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.

  相似文献   

18.
Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three fluorescent substrates with a 4-methylumbelliferyl group linked by (beta)-1,4 linkage to N-acetylglucosamine mono- or oligosaccharides were used to identify the chitinolytic activities of proteins which had been renatured following their separation by electrophoresis. This study provides the most complete evidence for the presence of a complex of chitinolytic enzymes in Enterobacter strains. Four enzymes were detected: two N-acetyl-(beta)-d-glucosaminidases of 89 and 67 kDa, an endochitinase with an apparent molecular mass of 59 kDa, and a chitobiosidase of 50 kDa. The biocontrol ability of the chitinolytic strains was demonstrated under greenhouse conditions. The bacteria decreased the incidence of disease caused by Rhizoctonia solani in cotton by 64 to 86%. Two Tn5 mutants of one of the isolates, which were deficient in chitinolytic activity, were unable to protect plants against the disease.  相似文献   

19.
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.  相似文献   

20.
Soilborne fungal phytopathogens cause significant losses in many economically important crops and vegetables. The only way to control these devastating pathogens is by using higher doses of fungicides which not only increase the cost of production but also cause significant damage to the environment. Therefore alternate control measures are always looked for. In the present study, an antagonistic strain was isolated from the soil of the pepper fields around the seashore of Jellanamdo, South Korea and identified as Paenibacillus ehimensis KWN38 based on 16S rRNA sequencing. The strain showed high antifungal activity against six tested fungal pathogens belonging to various taxonomic groups on dual culture plates. Furthermore, the strain produced volatile antimicrobial compounds which had strong fungal growth inhibitory effect. The strain also showed high chitinase, cellulase, glucanase and protease activities. The hyphal morphologies of Rhizoctonia solani AG-1 (IA), Fusarium oxysporum f.sp. lycopersici and Phytophthora capsici were significantly destroyed by the crude enzymes and butanol extract from the culture supernatant and the affected hyphae showed abnormal bending, tip curling, and irregular branching. Hence, Paenibacillus ehimensis KWN38 is considered as a potential biocontrol agent of the soil-borne fungi causing plant diseases which is an important perspective of the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号