首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Experiments were conducted in small arenas and on whole plants to explore the effect of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae), as alternative prey on the predation of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) larvae by green lacewing larvae, Mallada signatus Schneider (Neuroptera: Chrysopidae). Transgenic Bt (Bollgard II®) and conventional cotton plants were included to explore potential differences in the predator's performance on these cotton types. In small arenas, the presence of 20 aphids reduced predation on H. armigera larvae by 22% (from 5.5 to 3.3 of 10) by a single lacewing larva over a 24‐h period. The presence of H. armigera reduced predation on aphids by ca. 29% (from 16.8 to 11.0 of 20) over 24 h. On whole plants, the presence of alternative prey had no effect on the number of H. armigera larvae or aphids remaining after 3 days. The presence of H. armigera larvae alone, without the predator, caused a 24% reduction in the numbers of aphids on conventional, but not on Bt cotton plants. The combination of Bt cotton and lacewing larvae caused a 96.6% removal of early‐stage H. armigera larvae, a statistically significant increase over the addition of the proportions (91.6%) removed by each factor measured separately, providing evidence of synergism. These studies suggest that the presence of aphids as alternative prey would not necessarily disrupt the predation by green lacewing on larvae of H. armigera, especially on Bt cotton.  相似文献   

2.
Multiple predator species that coexist with each other and their mutual prey can have combined effects on prey mortality that are similar to the sum of each predator's individual impact (linear effects), greater than the sum of each predator's individual impact (risk enhancement), or less than the sum of each predator's individual impact (risk reduction). Understanding multiple predator effects is important to determine the impact of predators on pest prey in agroecosystems. If two predators share the same broad spatial domain and hunting mode and engage in intraguild predation, then their combination is expected to result in risk reduction for a mutual prey. We tested this hypothesis using both additive and replacement experimental designs on two species of generalist wolf spider predators (Tasmanicosa leuckartii and Hogna crispipes) that hunt in the same domain, and a mutual insect prey (cotton bollworm Helicoverpa armigera). We used two types of enclosures: a small simple laboratory enclosure, and a larger more complex cotton plant enclosure. We found that in the small simple laboratory enclosures, the presence of two spiders led to risk reduction of Helicoverpa larva mortality as expected, but in larger more complex cotton plant enclosures the presence of both species resulted in linear effects rather than risk reduction on Helicoverpa mortality. Furthermore, intraguild predation did not change multiple predator effects in laboratory or plant enclosures. This study has implications for managing arthropod predators in agroecosystems; contrary to predictions of ecological frameworks, coexistence of predators that share the same hunting mode and hunting domain may not lead to risk reduction on a mutual prey in more complex environments, where encounters among predators can be lower. Conservation of multiple predators of a single guild can play an essential role on biological control of insect pests.  相似文献   

3.
There is no conclusive evidence that Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia have evolved significant levels of resistance to Bollgard II® cotton (which expresses two Bt toxin genes, cry1Ac and cry2Ab). However, there is evidence of surviving larvae on Bollgard II cotton in the field. The distribution and survival of early‐instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae were examined on whole Bollgard II and non‐Bt cotton plants in greenhouse bioassays. The expression of Cry toxins in various parts of Bollgard II plants was compared to the survival of larvae in those locations. Only 1% of larvae survived after 6 days on greenhouse‐grown Bollgard II plants compared to 31% on non‐Bt cotton plants. Overall, and across all time intervals, more larvae survived on reproductive parts (squares, flowers, and bolls) than on vegetative parts (leaves, stems, and petioles) on Bollgard II plants. The concentration of Cry1Ac toxin did not differ between plant structures, whereas Cry2Ab toxin differed significantly, but there was no relationship between the level of expression and the location of larvae. This study provides no evidence that lower expression of Cry toxins in the reproductive parts of plants explains the survival of H. armigera larvae on Bollgard II cotton.  相似文献   

4.
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.  相似文献   

5.
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.  相似文献   

6.
The invasive light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), has not reached damaging levels on crops in California (USA), suggesting that its populations and impact are limited by generalist natural enemies. In a series of laboratory experiments, we examined resident spiders as predators of E. postvittana larvae on two host plants, the ornamental Australian tea tree, Leptospermum laevigatum (Gaertn.) F. Muell (Myrtaceae), and the weed French broom, Genista monspessulana (L.) L.A.S. Johnson (Fabaceae). Of three abundant spider species in Australian tea tree, two hunting spiders measurably reduced the numbers of E. postvittana larvae and plant damage, whereas a web‐weaving spider had no detectable impact. The adult stage of the dominant hunting spider Anyphaena aperta Banks (Anyphaenidae) consumed E. postvittana larvae, but neither large nor small juveniles had statistically detectable effects on numbers of larvae. However, plant damage was reduced in the presence of large juvenile A. aperta, suggesting that A. aperta may also have non‐consumptive effects on the feeding behavior of E. postvittana larvae. Anyphaena aperta consumed larvae only when larval densities exceeded a low threshold in a functional response experiment, leading to a type III functional response. Adult A. aperta showed no preference for different E. postvittana instars, whereas Cheiracanthium mildei L. Koch (Miturgidae), an abundant hunting spider on French broom, showed a partial preference for late‐instar larvae. The generalist feeding habits of the spiders may have precluded strong prey preferences. Results show that hunting spiders may help limit E. postvittana populations in California, and that they may in turn reduce the impact of E. postvittana on its host plants.  相似文献   

7.
We compared the survival of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) eggs and larvae on Bt and conventional cotton, in the presence or absence of the generalist predator, green lacewing larvae, Mallada signatus, (Schneider) (Neuroptera: Chrysopidae). In small arenas, green lacewings consumed a similar number of H. armigera eggs (ave. 15.8 ± 1.3 on conventional, 12.6 ± 1.4 on Bt cotton per predator over 24 h) and larvae (ave. 6.8 ± 0.7 conventional, 6.5 ± 0.8 Bt per predator over 24 h) whether on Bt or conventional cotton leaves. Likewise, similar numbers of eggs were consumed by each lacewing larva searching whole plants of either Bt (ave. 15.5 ± 0.6 of 49 over 24 h) or conventional (ave. 13.6 ± 1.1 of 49 over 24 h). On conventional plants over 72 h, survival of H. armigera larvae was 72.8% and decreased to 37.7% when lacewings were present, giving a net consumption rate of 35.1% (8.6 prey per predator over 72 h). On Bt cotton plants, 13.6% of the H. armigera larvae survived after 72 h and this decreased to 1.7% when lacewings were present. This combination of mortality factors operated synergistically. Helicoverpa armigera larvae moved to fruiting structures on conventional or Bt cotton but failed to survive in the squares (young flower buds) when the impacts of Bt and lacewings were combined. The removal of first to second instar H. armigera larvae from squares of Bt cotton by predators has the potential to reduce immediate pest damage and, perhaps more importantly, remove potentially Bt‐resistant genotypes.  相似文献   

8.
Methyl jasmonate (MeJA)‐mediated defense in conventional cotton, Gossypium hirsutum L. (Malvaceae), against cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was investigated with respect to the activities of the detoxification enzymes acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione S‐transferases (GST) in pupae as well as the performance of larvae. The results suggested that exogenous application of MeJA to cotton leaves depressed the activities of AChE, CarE, and GST of cotton bollworm pupae. Both the absolute and protein‐specific AChE activities of pupae were depressed at all three MeJA concentrations applied as compared with a control, and the effects of 0.4 mM MeJA were significantly higher than those of 0.1 and 0.2 mM. A marked reduction in absolute CarE activity was observed at the 0.4 mM MeJA treatment, whereas the protein‐specific activity was increased by 0.2 and 0.4 mM. Absolute GST activity was significantly depressed only by the 0.4 mM MeJA treatment, whereas protein‐specific GST activity was not markedly affected by MeJA. Protein content of pupae was reduced by 0.4 mM MeJA‐induced defense in cotton leaves. The development time of larvae was protracted and pupal weight was reduced by 0.1 and 0.4 mM MeJA‐treated cotton leaves. Larval weight gain was inhibited significantly on 0.2 and 0.4 mM MeJA‐treated cotton leaves. The results suggested that MeJA‐induced plant defense may have adverse effects on H. armigera. In addition to the inhibition of growth and development, induced defense may also impair the insect's ability to detoxify toxic plant secondary metabolites.  相似文献   

9.
Helicoverpa armigera is a major agricultural pest that is distributed across Europe, Asia, Africa and Australasia. This species is hypothesized to have spread to the Americas 1.5 million years ago, founding a population that is at present, a distinct species, Helicoverpa zea. In 2013, H. armigera was confirmed to have re‐entered South America via Brazil and subsequently spread. The source of the recent incursion is unknown and population structure in H. armigera is poorly resolved, but a basic understanding would highlight potential biosecurity failures and determine the recent evolutionary history of region‐specific lineages. Here, we integrate several end points derived from high‐throughput sequencing to assess gene flow in H. armigera and H. zea from populations across six continents. We first assemble mitochondrial genomes to demonstrate the phylogenetic relationship of H. armigera with other Heliothine species and the lack of distinction between populations. We subsequently use de novo genotyping‐by‐sequencing and whole‐genome sequences aligned to bacterial artificial chromosomes, to assess levels of admixture. Primarily, we find that Brazilian H. armigera are derived from diverse source populations, with strong signals of gene flow from European populations, as well as prevalent signals of Asian and African ancestry. We also demonstrate a potential field‐caught hybrid between H. armigera and H. zea, and are able to provide genomic support for the presence of the H. armigera conferta subspecies in Australasia. While structure among the bulk of populations remains unresolved, we present distinctions that are pertinent to future investigations as well as to the biosecurity threat posed by H. armigera.  相似文献   

10.
To verify current thresholds for Bollgard II® cotton in Australia, the impact of Helicoverpa spp. (Lepidoptera: Noctuidae) larvae on yield, development, and quality under various infestation intensities and durations, and stages of growth, was tested using small plot field experiments over two seasons. Infestation with up to 80 eggs m?1 of Helicoverpa armigera (Hübner) and Helicoverpa punctigera Wallengren showed that species, infestation level, and stage of growth had no significant effect on yields of seed‐cotton or lint and on maturity and fibre quality. The duration of infestation of white flowers with H. punctigera neonates (maximum of every day for up to 4 weeks) had no impact on the yield of seed‐cotton or lint, maturity, and fibre quality, but when 100% of flowers were infested (compared with 0 or 50%), seed‐cotton and lint yields were significantly reduced and maturity was delayed. Infestation with up to 18 medium H. armigera larvae m?1 at several plant stages did not significantly affect yields of seed‐cotton and lint, maturity, and fibre quality. A heliocide spray applied on a commercial farm at the current threshold resulted in a significantly higher lint yield, compared with a farm where no spray was applied. In conclusion, Bollgard II® cotton is highly resistant to Helicoverpa spp. infestation.  相似文献   

11.
12.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

13.
14.
Oogenesis and oviposition dynamics of female moths of tomato fruitworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), were compared in a monoculture of tomato (Solanum lycopersicum L.) and in mixtures with a highly preferred but unsuitable host plant, Solanum viarum Dunal. Female H. armigera provided with S. viarum laid many more eggs than those provided with tomato, both in choice and no‐choice experiments. Gravid female moths did not display any preference for oviposition neither between young or old plants of S. viarum or tomato, nor between young and old leaves of S. viarum. Larval mortality and larval developmental period significantly increased, with subsequent reduction in pupal weight, when H. armigera larvae fed on S. viarum leaves compared to a meridic diet. Oviposition of female moths significantly increased in tomato in the presence of S. viarum volatiles. However, in screen cages with an increasing percentage of S. viarum as a trap crop, the number of eggs laid on tomato as the main crop was the same. The results of this study are discussed in light of the possibility of using S. viarum as a ‘dead‐end’ trap crop.  相似文献   

15.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

16.
Oviposition preference and several measures of offspring performance of Helicoverpa armigera (Hübner) were investigated on a subset of its host plants that were selected for their reputed importance in the field in Australia. They included cotton, pigeon pea, sweet corn, mungbean, bean and common sowthistle. Plants were at their flowering stage when presented to gravid female moths. Flowering pigeon pea evoked far more oviposition than did the other plant species and was the most preferred plant for neonate larval feeding. It also supported development of the most robust larvae and pupae, and these produced the most fecund moths. Common sowthistle and cotton were equally suitable to pigeon pea for larval development, but these two species received far fewer H. armigera eggs than did pigeon pea. Mungbean also received relatively few eggs, but it did support intermediate measures of larval growth and survival. Fewest eggs were laid on bean and it was also the least beneficial in terms of larval growth. Among the host plant species tested, only flowering pigeon pea supported a good relationship between oviposition preference of H. armigera and its subsequent offspring performance. Australian H. armigera moths are thus consistent with Indian H. armigera moths in their ovipositional behaviour and larval performance relative to pigeon pea. The results suggest that the host recognition and acceptance behaviour of this species is fixed across its geographical distribution and they support the theory that pigeon pea might be one of the primary host plants of this insect. These insights, together with published results on the sensory responses of the females to volatiles derived from the different host plant species tested here, help to explain why some plant species are primary targets for the ovipositing moths whereas others are only secondary targets of this polyphagous pest, which has a notoriously broad host range. Handling Editor: Joseph Dickens  相似文献   

17.
The relative feeding rates and preferences of a hunting-spider assemblage inhabiting southern Spanish cotton fields for two major cotton pests, Helicoverpa armigera (Hübner) and Spodoptera littoralis (Boisdubal) (Lepidoptera: Noctuidae), were analyzed under laboratory conditions. First, a no-choice feeding test was used to determine relative feeding rates for hunting-spider families and species, offering a fixed number of 10 neonate larvae of H. armigera or S. littoralis and observing predation after 2 h, 4 h, 8 h, and 24 h. In a second test, Drosophila melanogaster, a very palatable alternative prey, was used to determine the degree of preference for cotton pest larvae. The mean number of first-instar lepidoptera larvae consumed by hunting spiders after 24 h was 8.57±0.25. As expected, spiders showed no preference for either of the two cotton pest species H. armigera and S. littoralis over the other. Results also showed that cursorial spiders of the families Miturigidae (represented here by Cheiracanthium pelasgicum) and Philodromidae consumed significantly higher percentages of larvae than crab spiders belonging to the Thomisidae family after 2 h and 24 h, respectively. In the prey choice test, Cheiracantium pelasgicum displayed a strong preference for cotton pest larvae while Thomisidae and Oxyopidae showed no significant preference. In addition, as the attack sequence progressed, Ch. pelasgicum showed a clear tendency towards the alternation of prey while Thomisidae, and more irregularly Oxyopidae, maintained their preference for D. melanogaster. These findings confirmed both the considerable potential value of some cursorial spiders (e.g. Ch. pelasgicum) in the biological control of lepidopteran cotton pests and the relatively low impact of other hunting spiders, e.g. Thomisidae, on pests of this kind.  相似文献   

18.
Cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a major pest of cotton and corn crops in northern China. A phenological differentiation between fourth generation cotton bollworms from cotton and those from corn fields was observed in northern China during 1999–2000. The proportion of pupation in late fall was marginally higher in cotton fields compared to that in corn fields; however, the proportions of fall emergence of moths from cotton fields were significantly higher than those from corn fields. The proportion of spring emergence of moths was also significantly higher for larvae collected from cotton (28.0%) than from corn (14.5%). The overwintering duration of females was significantly shorter than that of males in both crops. Moreover, the overwintering duration of bollworm populations from cotton was significantly longer than that from corn. The early spring population of H. armigera came from both cotton and corn fields, but the spring emergence of moths from larvae collected from cotton took about 5 days longer to reach 100% emergence compared to that from corn.  相似文献   

19.
Transgenic cotton has been released for cultivation in several parts of the world to increase crop productivity. However, concerns have been raised regarding the possible undesirable effects of genetically modified crops on non-target organisms in the eco-system. Therefore, we studied the effects of transgenic cottons with cry1Ac gene from Bacillus thuringiensis Berliner (Bt) on the natural enemies of cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under field and laboratory conditions. There was no apparent effect of transgenic cotton on the relative abundance of predatory spiders (Clubiona sp. and Neoscona sp.), coccinellid (Cheilomenes sexmaculatus Fab.), and the chrysopid (Chrysoperla carnea Stephens). However, the abundance of spiders, coccinellids, and chrysopids was quite low in insecticide protected plots towards end of the cropping season. There was a significant reduction in cocoon formation and adult emergence of the ichneumonid parasitoid, Campoletis chlorideae Uchnida reared on H. armigera larvae fed on the leaves of transgenic cottons before and after parasitization. However, no Bt toxins were detected in H. armigera larvae and the parasitoid cocoons with enzyme linked immunosorbent assay. Reduction in cocoon formation was because of early mortality of the H. armigera larvae due to Bt toxins in the leaves of transgenic cotton. There was a slight reduction in adult weight and fecundity, and prolongation of the larval period when the parasitoid was raised on H. armigera larvae fed on the leaves of transgenic cotton before and after parasitization. Survival and development of C. chlorideae was also poor when H. armigera larvae were fed on the leaves of cotton hybrid Mech 184. The adverse effects of transgenic cotton on survival and development of C. chlorideae were largely due to early mortality, and possibly poor nutritional quality of H. armigera larvae due to toxic effects of the transgene.  相似文献   

20.
不同食料植物对棉铃虫生长发育和繁殖的影响   总被引:15,自引:4,他引:11  
阮永明  吴坤君 《昆虫学报》2001,44(2):205-212
报道了棉花、烟草、番茄和辣椒4种植物对棉铃虫Helicoverpa armigera生长发育和繁殖的影响。棉铃虫成虫喜欢在番茄上产卵,在辣椒上的着卵量最少。初孵幼虫喜选食嫩棉叶,选食辣椒嫩叶的虫数最少。4组幼虫取食嫩叶时的平均相对生长速率都有显著差异,顺序为棉叶组>烟叶组>番茄叶组>辣椒叶组。幼虫存活率以取食棉花时最高,取食番茄时最低。棉花组成虫的产卵量最高,烟草组的产卵量最低。取食棉花的棉铃虫种群增长的速度约为取食番茄时的14倍。6龄幼虫能有效利用和转化棉铃、烟草蒴果、辣椒果实,而对番茄果实的利用和转化效率较低。棉铃虫可分别以这4种植物的不同器官为食完成世代循环。其中,棉花是最适宜的寄主,辣椒和番茄是较不适宜的寄主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号