首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cigarette beetles, Lasioderma serricorne (F.) (Coleoptera: Anobiidae), cause significant damage to the multibillion dollar food and tobacco industries worldwide each year. A non‐insecticidal alternative to manage Lserricorne is the application of mating disruption, in which high levels of synthetic sex pheromone are released to create an atmosphere that results in males failing to mate females, thereby causing population suppression or extinction. The reported work used synthetic serricornin, the predominant sex pheromone of L. serricorne, in mating disruption trials conducted in selected food‐ and feed‐processing facilities in South Carolina during 2010 and 2011. Mills subjected to mating disruption trials were monitored using oviposition cups filled with larval food and pheromone traps for males that contained monitoring lures. Immediately after deployment of mating disruption dispensers, trap captures declined significantly and indicated a reduction in population levels, that is, there was ‘trap shutdown’. A significant reduction was observed in numbers of adult beetles caught in the traps 8 weeks before and 8 weeks after treatment in both years. Beetle numbers from pheromone traps in untreated buildings remained at similar levels or increased after the time of mating disruption deployment in treated buildings. The numbers of adults that emerged from oviposition food cups were generally low and varied irregularly in treated and untreated buildings and were determined to be of little value for assessing treatment effects on reproduction. These initial field studies in the USA suggest that release of the synthetic sex pheromone of L. serricorne for mating disruption can significantly inhibit proper orientation behaviour of male L. serricorne to females and may lead to pest population decline from mating disruption.  相似文献   

2.
The efficacy of pheromone‐based mating disruption for control of the peachtree borer Synanthedon exitiosa (Say) in small‐scale peach orchards (<0.1 ha) was evaluated in a total of six blocks at two locations in New Mexico, USA, from 2010 to 2015. In treated orchards, commercial pheromone dispensers were deployed at rates of approximately 500 or 600 per ha. Pheromone‐based monitoring traps were installed in each block (treated and untreated), and catches of male moths were recorded throughout each growing season to assess the effectiveness of pheromone treatments and to determine the pest's seasonal flight activity. Levels of larval trunk infestation were assessed twice yearly by inspecting all trees at and below soil level. Infestation levels in an unreplicated block of mature peaches at one site (Los Lunas) declined from 57.5% to 8.4% while under pheromone treatment (2010–2011). Pheromone treatments in this block were discontinued in 2012, and infestation levels subsequently increased to 16.9% by spring 2015. In a replicated study in four other peach blocks at the same site, annual application of pheromones from 2012 to 2014 resulted in a significant difference in larval infestations in treated blocks compared to untreated blocks. In addition, when a single block of infested peaches at a second site (Alcalde) was treated with pheromone dispensers for three consecutive years, trunk infestation levels declined significantly, but were not completely eliminated. These results indicate that mating disruption can help protect even very small orchards from damage by S. exitiosa. However, the technique is likely to be more effective where such orchards are relatively isolated and/or where the surrounding pest pressure is moderate or low.  相似文献   

3.
The effectiveness of mating disruption to control the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in greenhouse tomato crops was evaluated in four trials carried out in winter–spring and summer–winter growing seasons in Southwestern Sardinia (Italy). Pheromone dispensers loaded with 60 mg of the natural blend of the major and minor sex pheromone component (rate 90 : 10) were applied in disrupted greenhouses at a rate of 1000/ha (60 g of active ingredient/ha). Male captures in monitoring pheromone traps, percentage of tomato plants infested by T. absoluta and damage on leaves and fruits were monitored weekly and compared in disrupted and untreated (control) greenhouses. In greenhouses disrupted with 1000 dispensers/ha, a reduction of 93–97% in male trap captures was observed, compared with control. Leaf damage was significantly lower in greenhouses disrupted with 1000 dispensers/ha than in control ones, with a reduction of infestation throughout the growing season ranging from 57% to 85%. Pheromone dispensers applied at the density of 1000/ha significantly reduced the percentage of damaged fruits by 62–89%. In control greenhouses, the highest damage on leaves and fruits was generally observed in edge plants, while leaf and fruit infestation was uniformly distributed in pheromone‐treated greenhouses, indicating an even distribution of the pheromone cloud inside the greenhouse. Mating disruption showed to be an efficient strategy to control in greenhouse the tomato leafminer and can be included in the overall tomato integrated pest management programs.  相似文献   

4.
Over two growing seasons, Isomate GBM-Plus tube-type dispensers releasing the major pheromone component of grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), were evaluated in vineyards (Vitis spp.) in Michigan, New York, and Pennsylvania. Dispensers were deployed in three different density-arrangement treatments: 124 dispensers per ha, 494 dispensers per ha, and a combined treatment with 124 dispensers per ha in the vineyard interior and 988 dispensers per ha at the vineyard border, equivalent to an overall density of 494 dispensers per ha. Moth captures and cluster infestation levels were compared at the perimeter and interior of vineyards receiving these different pheromone treatments and in vineyards receiving no pheromone. Orientation of male moths to pheromone-baited traps positioned at the perimeter and interior of vineyards was reduced as a result of mating disruption treatments compared with the nontreated control. These findings were consistent over both years of the study. Disruption of male moth captures in traps varied from 93 to 100% in treated vineyards, with the 494 dispensers per ha application rates providing significantly higher level of disruption than the 124 dispensers per ha rate, but only in 2007. Measurements of percentage of cluster infestation indicated much higher infestation at perimeters than in the interior of the vineyards in all three regions, but in both sample positions there was no significant effect of dispenser density on cluster infestation levels in either year. The contrasting results of high disruption of moth orientation to traps in vineyards that also had low levels of crop protection from this pheromone treatment are discussed in the context of strategies to improve mating disruption of this tortricid pest.  相似文献   

5.
The oriental beetle, Anomala orientalis (Waterhouse) (Col., Scarabaeidae), is the most important root‐feeding pest of blueberries and turfgrass in New Jersey, USA. Previous studies showed that mating disruption is a feasible option for oriental beetle management; however, assessing its efficiency can be challenging, and little is known on its long‐term effects. Accordingly, we conducted studies to investigate low‐dose pheromone lures equivalent to oriental beetle females (i.e. female mimics) as easy‐to‐use indicators of mating disruption success, determine the distance at which oriental beetle males respond to female‐mimic lures and assess the long‐term (3‐year) effects of mating disruption on oriental beetle populations in entire blueberry fields. Our studies showed that rubber septa baited with 0.3 μg of the oriental beetle sex pheromone (Z)‐7‐tetradecen‐2‐one attract similar numbers of males as compared with virgin females and can thus be used as a female mimic. The range of attraction of this lure was found to be also similar to virgin females and <30 m. In blueberries, mating disruption provided 87% inhibition of oriental beetle populations (trap shutdown) over a 3‐year period. Oriental beetle male captures in disrupted fields were threefold higher along the field edges than in the field interiors, indicating movement of males from nearby areas into the pheromone‐treated fields. In addition, mating disruption reduced male attraction to female‐mimic lures by 93% in all 3 years and reduced the number of larvae in sentinel potted plants in 1 of 2 years. These results show for the first time that mating disruption provides consistent long‐term field‐wide control of oriental beetle populations and that female‐mimic pheromone lures can be used as a new tool to assess oriental beetle mating disruption success.  相似文献   

6.
Codling moths, Cydia pomonella (L.), have long been suspected of emerging from stacks of harvest bins in the spring and causing damage to nearby apple and pear orchards. With increased use of mating disruption for codling moth control, outside sources of infestation have become more of a concern for growers using pheromone based mating disruption systems. Studies were designed to provide information on bins as a source of codling moth and the pattern of codling moth emergence from stacks of bins. In these studies, codling moth larvae colonized wood harvest bins at a much higher frequency than harvest bins made of injection molded plastic (189 moths emerged from wood compared with five from plastic). There was no statistical difference in the number of moths infesting bins that had been filled with infested fruit compared with bins left empty at harvest. This suggests that codling moth enter the bins during the time that the bins are in the orchard before harvest. Emergence of laboratory reared adult codling moth from wood bins placed in stacks was found to be prolonged compared with field populations. Temperature differences within the bin stacks accounted for this attenuated emergence pattern. Covering bin stacks with clear plastic accelerated codling moth development in the upper levels of the stack. Codling moth emergence patterns from plastic-covered stacks more closely coincided with male flight in field populations. This information could be important in developing a technique for neutralizing codling moth-infested bins, and in understanding how infested bins may influence pest management in fruit orchards that are located near bin piles. Implications for control of codling moth in conventional orchards and in those using mating disruption as the principal component of an integrated pest management system include increased numbers of treatments directed at areas affected by infested bins.  相似文献   

7.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

8.
The moth Tecia (Scrobipalpopsis) solanivora Povolny (Lepidoptera: Gelechiidae) is the most important pest of potato, Solanum spp., in Central America and adjacent South American countries. Insecticide treatments are not sufficiently effective; therefore, we investigated the feasibility of pheromone-mediated mating disruption for control of T. solanivora. Pheromone dispensers were formulated with 70 mg of the three sex pheromone compounds (E)-3-dodecenyl acetate, (Z)-3-dodecenyl acetate, and dodecyl acetate, in a ratio of 100:56:100, respectively. Male attraction to these compounds is optimal at a ratio of 100:1:20, thus the mating disruption dispensers contained an off-blend, which attracted only a few males. Nonetheless, one mating disruption dispenser suppressed male attraction to calling females in a flight tunnel and reduced male activation in response to female pheromone. Communication disruption is accordingly due to camouflage of the female signal and possibly due to a reduction of male responsiveness by sensory imbalance. Only a few males were observed in a 3-ha potato field treated with 84 g pheromone/ha, compared with an untreated control field. During 2 mo, male attraction to traps baited with calling females or synthetic pheromone was strongly reduced. This reduction confirms the potential of mating disruption for management of T. solanivora. The efficacy of the pheromone treatment can be further improved by earlier dispenser application, by increased dispenser load, and by treatment of larger fields to reduce immigration of mated females.  相似文献   

9.
The reluctance of Israeli vine growers to adopt the mating disruption technique to control the moth Lobesia botrana Den. & Schiff. has been attributed to the high cost of this method compared with that of traditional insecticide control. In this study, we tested the possibility of reducing the cost, first by testing different pheromone formulations (and thus open the market for competition) and second by reducing the pheromone concentration used in vineyards. Comparisons were made between two pheromone formulations--Shin-Etsu (Tokyo, Japan) at 165 g/ha and Concep (Sutera, Bend, OR) at 150 g/ha--and between two concentrations of Shin-Etsu, 165 and 110 g/ha. Pheromone dispensers were placed at the onset of the second moth generation. Comparison of the numbers of clusters infested with eggs and larvae of L. botrana showed no significant differences in the performance, either between the two formulations, or between the two tested concentrations. The results suggest that 1) the two formulations are equally effective, and 2) a low pheromone concentration is sufficient to maintain good control of small populations of L. botrana. However, when the population is high, pest control efficacy is not improved by increasing the pheromone concentration. Therefore, in the interest of reducing the relatively high cost of mating disruption, we emphasize that increasing the pheromone concentration does not provide improved control of high populations of L. botrana. The cost of mating disruption can be diminished by reducing the applied pheromone concentration and by using the least expensive pheromone formulations  相似文献   

10.
The leopard moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae), is a damaging pest for many fruit trees (e.g., apple [Malus spp.], pear [Pyrus spp.] peach [Prunus spp.], and olive [Olea]). Recently, it caused serious yield losses in newly established olive orchards in Egypt, including the death of young trees. Chemical and biological control have shown limited efficiency against this pest. Field tests were conducted in 2005 and 2006 to evaluate mating disruption (MD) for the control of the leopard moth, on heavily infested, densely planted olive plots (336 trees per ha). The binary blend of the pheromone components (E,Z)-2,13-octadecenyl acetate and (E,Z)-3,13-octadecenyl acetate (95:5) was dispensed from polyethylene vials. Efficacy was measured considering reduction of catches in pheromone traps, reduction of active galleries of leopard moth per tree and fruit yield in the pheromone-treated plots (MD) compared with control plots (CO). Male captures in MD plots were reduced by 89.3% in 2005 and 82.9% in 2006, during a trapping period of 14 and 13 wk, respectively. Application of MD over two consecutive years progressively reduced the number of active galleries per tree in the third year where no sex pheromone was applied. In all years, larval galleries outnumbered moth captures. Fruit yield from trees where sex pheromone had been applied in 2005 and 2006 increased significantly in 2006 (98.8 +/- 2.9 kg per tree) and 2007 (23 +/- 1.3 kg per tree) compared with control ones (61.0 +/- 3.9 and 10.0 +/- 0.6 kg per tree, respectively). Mating disruption shows promising for suppressing leopard moth infestation in olives.  相似文献   

11.
Spiny bollworm, Earias insulana Boisduval (Lepidoptera: Noctuidae), is one of the most important pest of malvaceous plants throughout the world, except America. In recent years, this insect has been serious pest for cotton fields in southern regions of Iran, especially Darab region of Fars province. In order to evaluate the performance of sex pheromone in reduction of infestation percentage of the spiny bollworm by mass trapping method, an experiment was carried out during year of 2012 in Darab region in Randomised Completely Block Design with six treatments and four replications. The treatments were: application of the four sex pheromone trap densities at the rates of 16, 20, 24 and 30?traps/h, application of Larvin chemical insecticide at the rate of 1?L/h and control. Percentages of infected bolls and flowers to E. insulana were weekly determined. The application of Larvin insecticide performed as the pest population reached to economic threshold level. Analysis variance of results showed that there are significant differences between time, trap number and time?×?trap interaction on infestation percentage per hectare. During sampling time, the highest infestation percentage was in control treatment and the lowest one was observed in 30 and 24?traps/h treatments. The peak of infestation percentage was seen in 18th of November. The best efficiency among treatments was observed in pheromone trap. In conclusion, using sex pheromone trap in comparison to application of insecticides can efficiently reduce infestation level of cotton fields.  相似文献   

12.
Experiments were conducted to test a mating disruption program for the mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) in California vineyards. The sprayable, microencapsulated formulation of the racemic sex pheromone lavandulyl senecioate was applied with an air-blast sprayer, using three and four applications in 2003 and 2004, respectively. Mating disruption was combined with an application of buprofezin (2004) in June. Compared with a no-pheromone control, there were significantly lower season-long trap catches of adult males, season-long mealybug densities (2003 only), and crop damage in mating disruption plots. The amount of mealybug reduction and mechanisms that resulted in lower crop damage in mating disruption plots is discussed. In samples taken during the growing season (April to September), mealybug density was only 12.0 +/- 15.6 and 31.1 +/- 11.6% lower in the mating disruption plots than in control plots in 2003 and 2004, respectively. In the mating disruption treatment, mealybug egg production was significantly lower (2003 only), as were the proportion of ovisacs and crawlers produced. There was no treatment impact on percentage of parasitism. Mealybug density influenced treatment impact. In 2004, vines were categorized as having low, medium, or high mealybug densities during a preapplication survey. After treatment application, mealybug density was reduced by 86.3 +/- 6.3% on vines in the low mealybug density category, but it was unchanged on vines in the high density category. Another factor that reduced treatment impact was the relatively short effective lifetime of the sprayable formulation.  相似文献   

13.
The midge Dasineura mali (Kieffer) (Diptera: Cecidomyiidae) is a significant pest of apples (Malus spp.), and the recent identification of the female sex pheromone is enabling new direct control tactics to be considered. Direct control using male suppression will require knowledge of the frequency of multiple mating, dispersal and colonization rates, and the efficiency of male removal. Males were able to mate up to five times, with a mean of 2.7 times when presented in a 10 female-to-1 male group, designed to simulate male suppression. Male catch in response to the pheromone loading was curvilinear over 4 orders of magnitude from 3 microg to 30 mg on rubber septa. Trapping using a high-dose pheromone lure was combined with oil-based traps similar to the inexpensive New Zealand "Lynfield trap" used for tephritid surveillance, to test male suppression in young orchard blocks at 500 traps per ha. Monitoring traps indicated 96% lower catch in the treated plots compared with control plots, over 137 d. However, a lack of shoot tip infestation in both treated and untreated plots indicated limited colonization and prevented an assessment of potential population suppression. Furthermore, a contribution to these results from communication disruption cannot be ruled out. Replicated transects of frequency of infested shoots from a mature orchard across the adjacent young block confirmed that colonization by ovipositing females was essentially limited to the first 30 m.  相似文献   

14.
We appraised mating disruption (MD) to control pea moth, Cydia nigricana (Fabricius) (Lepidoptera: Tortricidae), by assessing male attraction to monitor traps, larval pod infestation, and larval age structure in pheromone‐treated and untreated grain pea fields [Pisum sativum L. (Fabaceae)], over a 5‐year period. Cellulose pheromone dispensers were manually attached to the top shoots of pea plants and released 540 mg ha?1 day?1 synthetic pheromone E8,E10‐dodecadien‐1‐yl acetate in a first test series (2000–2001) and ca. 4 200 mg pheromone ha?1 day?1 in a second series (2004–2006). The dispensers had a half‐life of about 30 days. Although male attraction to pheromone monitoring traps was largely suppressed at the edges and within MD fields in both test series, MD treatments did not reduce pod infestation in the open field in 2000 and 2001. In the 2004–2006 series, larval damage reduction was achieved in the majority of the trials but overall MD efficacy in the open field was only 61% and not significant. In contrast, in field cages placed within the experimental sites and supplied with unmated pea moths, MD control was consistently high and significant. There were no obvious differences in the larval age distribution in all MD and control treatments, suggesting that infestations started and developed further similarly. As a univoltine species, C. nigricana larvae stay in the soil of pea fields for hibernation and pupate. The following year, emerging adults disperse and fly to the closest pea crop. Combined emergence site and pea crop treatments were conducted over 2 years to include this early migration phase of C. nigricana adults. However, the emergence site treatments did not enhance MD‐control efficacy. We conclude that mating activity was only prevented in cage tests, whereas substantial mating occurred during the transit phase outside the pheromone‐treated fields either within non‐crop vegetation and/or at the edges of pheromone‐treated pea fields orientated upwind. Thus, resulting gravid female entry can be regarded as the major constraint to reliable MD control.  相似文献   

15.
The efficacy of mating disruption by using Isomate-M 100 pheromone dispensers and two formulations of microencapsulated sprayable pheromone for management of oriental fruit moth, Grapholita molesta (Busck), was compared with conventional insecticides in large plot studies in Henderson County, North Carolina, in 2000 and 2001. In addition, experiments were conducted in small and large plots to test the response of oriental fruit moth males to different application rates of sprayable pheromone. Pheromone trap catches were significantly reduced in mating disruption blocks compared with conventional and abandoned orchards. Pheromone traps placed in the upper canopy captured significantly more moths than traps placed in the lower canopy across all treatments, and lures loaded with 100 microg of pheromone caught more moths than traps with 300 microg, but the difference between doses was statistically significant at only one location in 2001. Isomate-M 100 provided excellent trap shutdown and was significantly more effective than sprayable pheromone formulations. Fruit damage by oriental fruit moth larvae was very low (< or = 1%) in mating disruption blocks and was generally lower than in conventional and nonmanaged blocks. Based on male moth response to pheromone traps in small plots, there was little difference among doses of sprayable pheromone, ranging from 12.4 to 49.1 g (AI)/ha, but efficacy declined at 2.4 g (AI)/ha. With the exception of one orchard, there was no significant difference between 12.4 and 37.1 g (AI)/ha under low and high oriental fruit moth population pressure in large plot studies. Mating disruption proved to be an alternative to organophosphate insecticides for managing oriental fruit moth populations in North Carolina apple orchards.  相似文献   

16.
Models for mating disruption by means of pheromone for insect pest control   总被引:1,自引:0,他引:1  
Models are presented to investigate the population dynamic behavior of a pest population with the release of pheromone for mating disruption. Three mechanisms of mating disruption are considered: (i) confusion of males, (ii) competition with female pheromone trails yielding false trail following, (iii) emigration of males prior to mating. In addition, several refinements to confusion are considered. Confusion and emigration of males were found to be very similar both quantitatively and dynamically; also, a combination of both mechanisms was very little more efficient than either one separately. False trail following is difficult to compare with the other two, since competition with wild females is involved and thus the total population size enters the equations. Density dependence of the action of pheromones results in some cases in which mating disruption cannot control the pest population. Similarly, aggregation of the pest population decreases the efficiency of the method unless the pheromone action is density independent. Delayed mating of females makes control easier, and may constitute one mechanism for mating disruption.  相似文献   

17.
Abstract Field trials were conducted in China in 2008 and 2009 to evaluate the efficacy of mating disruption (MD) on diamondback moth, Plutella xylostella, in cabbage, Brassica oleracea var. capitata. Effectiveness was positively correlated with the MD dispenser density in the field. A density of 167 MD dispensers per ha produced an average population decrease of about 50% compared to the conventional‐practice field. Significant fewer males were captured in pheromone‐treated and conventional‐practice fields than in the blank control field, but the difference was not significant between the pheromone‐treated and conventional‐practice fields. In addition, fewer eggs and larvae were observed in pheromone‐treated fields. Our results suggest mating disruption coupled with minimal insecticidal supplements is a promising solution for resistance management and control of diamondback moth infestation.  相似文献   

18.
Mating disruption is an environmentally safe plant protection strategy that uses a synthetic copy of an insect pheromone to interfere with sexual communication and hence reproduction. To date, a number of pest moths have been controlled with applications of formulated pheromones as mating disruptants. Recently, however, the first example of resistance to mating disruption was documented in one of the major tea pests in Japan, the smaller tea leafroller moth, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae). To avoid other such cases, it is important to elucidate the mechanism(s) by which the disruptant lost its effectiveness. To this end, we imposed further selection by rearing field‐collected resistant insects with a synthetic pheromone in the laboratory. After more than 70 generations of selection, a strain with quite strong resistance was established, males of which could find and copulate with their mates even in the presence of 1 mg l?1 of disruptant. Although the mating ability of this strain was greatly increased, the composition and blend ratio of the sex pheromone produced and emitted by females were not obviously changed in comparison with those of females sensitive to mating disruption. However, male response to the pheromone blend was markedly broadened after selection so that resistant males could locate a synthetic pheromone source even when it lacked a pheromone component that is normally necessary for attraction. Males capable of locking onto off‐ratio pheromone blends may be better able to find calling females in pheromone‐treated environments than narrowly tuned males because of greater capability of overcoming sensory imbalance.  相似文献   

19.
Communicational disruption mechanisms for Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), were determined using a suite of mathematical tools and graphical operations that enable differentiation between competitive attraction and non‐competitive mechanisms of disruption. Research was conducted in 20 field cages, each covering 12 mature apple trees. Commercial monitoring lures releasing Oriental fruit moth pheromone at a rate of 0.04 μg h?1 and distributed at densities of 0, 1, 2, 4, 8, and 17 per cage were used to evaluate the effect of low‐releasing dispensers on the disruption of sexual communication. Graphical analyses revealed that near‐female‐equivalent pheromone dispensers disrupted Oriental fruit moth competitively. Commercial mating disruption dispensers releasing Oriental fruit moth pheromone at 60 μg h?1 and deployed at 0, 4, 6, 10, 15, 20, and 30 per cage were used to evaluate the effect of high‐releasing dispensers on the disruption of sexual communication. Oriental fruit moth disruption shifted to a non‐competitive mechanism for high‐releasing dispensers. This is the first time such a shift in disruption mechanism has been demonstrated against a background of otherwise identical experimental conditions. Near‐female‐equivalent pheromone dispensers were also used to quantify the additive effect of an attract‐and‐remove control strategy compared with competitive mating disruption. We report a five‐fold reduction in Oriental fruit moth captures under attract‐and‐remove compared to mating disruption using near‐female‐equivalent dispensers. Surprisingly, release of female Oriental fruit moths into these large‐cage disruption studies had no measurable impact on male trapping.  相似文献   

20.
Certain plasmids in Enterococcus faecalis encode a mating response to recipient-produced peptide sex pheromones. Targeted disruption of tra genes on pPD1 suggested that TraA plays a central role in the plasmid-specific pheromone signaling pathway. TraA functioned as a negative regulator for the pheromone-inducible conjugal transfer. Complementation analysis of pPD1 tra gene mutants by pAD1 suggested that the pheromone binding function of TraC was non-specific between these plasmids, but the function of TraA and the pheromone shutdown function of TraB are plasmid-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号