首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc) and dithiothreitol (DTT) in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis). Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria.  相似文献   

2.

Background  

The NIsin-Controlled gene Expression system NICE of Lactococcus lactis is one of the most widespread used expression systems of Gram-positive bacteria. It is used in more than 100 laboratories for laboratory-scale gene expression experiments. However, L. lactis is also a micro-organism with a large biotechnological potential. Therefore, the aim of this study was to test whether protein production in L. lactis using the NICE system can also effectively be performed at the industrial-scale of fermentation.  相似文献   

3.

Background  

Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins.  相似文献   

4.
Aims: To develop a rapid, sensitive, specific tool for the detection and quantification of Lactococcus garvieae in food and environmental samples. Methods and Results: A real‐time quantitative PCR (qPCR) assay with primers for CAU12F and CAU12R based on the 16S rRNA gene of L. garvieae was successfully established. The limit of detection for L. garvieae genomic DNA was 1 ng DNA in conventional PCR and 32 fg with a mean CT value of 36·75 in qPCR. Quantification of L. garvieae vegetative cells was linear (R2 = 0·99) over a 7‐log‐unit dynamic range down to ten L. garvieae cells. Conclusions: This method is highly specific, sensitive and reproducible for the detection of L. garvieae compared to gel‐based conventional PCR assays, thus providing precise quantification of L. garvieae in food and natural environments. Significance and Impact of the Study: This work provides efficient diagnostic and monitoring tools for the rapid identification of L. garvieae, an emerging pathogen in aquaculture and an occasional human pathogen from other members of the genus Lactobacillus.  相似文献   

5.
Aims: The gram‐positive bacterial genus Lactococcus has been taxonomically classified into seven species (Lactococcus lactis, Lactococcus garvieae, Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis, Lactococcus chungangensis and Lactococcus fujiensis). This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of the seven lactococcal species, as well as to differentiate the two industrially important dairy subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results: A multiplex PCR primer set was designed based on the nucleotide sequences of the 16S rRNA gene of the seven lactococcal species. The specificity of the established one‐step multiplex PCR scheme was verified using more than 200 bacterial strains, in which a complete sequence match was confirmed by partial sequencing of their 16S rRNA gene. Conclusions: The one‐step multiplex PCR enables the identification and speciation of bacterial strains belonging to the genus Lactococcus and the differentiation of strains of L. lactis subsp. lactis and L. lactis subsp. cremoris. Significance and Impact of the Study: This work provides an efficient method for identification of lactococcal strains of industrial importance.  相似文献   

6.
7.

Background  

Natural allergen sources can supply large quantities of authentic allergen mixtures for use as immunotherapeutics. However, such extracts are complex, difficult to define, vary from batch to batch, which may lead to unpredictable efficacy and/or unacceptable levels of side effects. The use of recombinant expression systems for allergen production can alleviate some of these issues. Several allergens have been tested in high-level expression systems and in most cases show immunereactivity comparable to their natural counterparts. The gram positive lactic acid bacterium Lactococcus lactis is an attractive microorganism for use in the production of protein therapeutics. L. lactis is considered food grade, free of endotoxins, and is able to secrete the heterologous product together with few other native proteins. Hypersensitivity to peanut represents a serious allergic problem. Some of the major allergens in peanut have been described. However, for therapeutic usage more information about the individual allergenic components is needed. In this paper we report recombinant production of the Ara h 2 peanut allergen using L. lactis.  相似文献   

8.
After enrichment of Odontesthes platensis intestinal contents, 53 lactic acid bacteria (LAB) were isolated. From the four isolates that showed inhibitory activity against Lactococcus garvieae 03/8460, strain TW34 was selected because it exerted the strongest inhibition. It also inhibited other Gram-positive bacteria, but not Gram-negative fish pathogens. Phenotypic and 16S rDNA phylogenetic analyses showed that TW34 belongs to Lactococcus lactis. In addition, TW34 showed to be sensitive to different antibiotics. The production of the inhibitory agent against L. garvieae was growth associated, and it was significantly influenced by the incubation temperature. The optimal temperature for the antimicrobial production was as low as 15°C. Both acidification and hydrogen peroxide production were ruled out as the source of inhibition. In contrast, the antimicrobial activity was completely lost by treatment with proteolytic enzymes, which confirmed that the inhibitory substance was a bacteriocin. The bacteriocin was highly thermostable (121°C for 15 min) and active between pH 3 and 11. It remained stable for up to 2 months when stored at 4°C and up to 6 months at −20°C. Our results suggest that the strain L. lactis TW34 could provide an alternative for lactococcosis control and therefore be considered for future challenge experiments with fish.  相似文献   

9.

Background  

Despite the fact that many reports deal with glycolysis in Lactococcus lactis, there is not much information on the regulation of uptake of glucose itself. The aim of the present work was to investigate the effect of the glucose level on its specific uptake rate.  相似文献   

10.
The population structure and diversity of Lactococcus garvieae, an emerging pathogen of increasing clinical significance, was determined at both gene and genome level. Selected lactococcal isolates of various origins were analyzed by a multi locus sequence typing (MLST). This gene-based analysis was compared to genomic characteristics, estimated through the complete genome sequences available in database. The MLST identified two branches containing the majority of the strains and two branches bearing one strain each. One strain was particularly differentiated from the other L. garvieae strains, showing a significant genetic distance. The genomic characteristics, correlated to the MLST-based phylogeny, indicated that this “separated strain” appeared first and could be considered the evolutionary intermediate between Lactococcus lactis and L. garvieae main clusters. A preliminary genome analysis of L. garvieae indicated a pan-genome constituted of about 4100 genes, which included 1341 core genes and 2760 genes belonging to the dispensable genome. A total of 1491 Clusters of Orthologous Genes (COGs) were found to be specific to the 11 L. garvieae genomes, with the genome of the “separated strain” showing the highest presence of unique genes.  相似文献   

11.

Background  

Lactococcus lactis is recognised as a safe (GRAS) microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth.  相似文献   

12.

Background  

Listeria monocytogenesis a well-characterized food-borne pathogen that infects pregnant women and immunocompromised individuals. Listeriolysin O (LLO) is the major virulence factor of the pathogen and is often used as a diagnostic marker for detection of L. monocytogenes. In addition, LLO represents a potent antigen driving T cell-mediated immunity during infection. In the present work, Lactococcus lactisNZ9000 was used as an expression host to hyper-produce LLO under inducible conditions using the NICE (NIsin Controlled Expression) system. We created a modified pNZ8048 vector encoding a six-His-tagged LLO downstream of the strong inducible PnisA promoter.  相似文献   

13.

Aims

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.

Methods and Results

The three bacteriocin‐producing strains were grown in Macfarlane broth and in De Man–Rogosa–Sharpe (MRS) broth. For each strain, the bacterial count, pH drop and production of organic acids and bacteriocins were measured for different period of time. The ability of the probiotic candidates to inhibit Listeria ivanovii HPB 28 in co‐culture in Macfarlane broth was also examined. Lactococcus lactis subsp. lactis biovar diacetylactis UL719, L. lactis ATCC 11454 and Ped. acidilactici UL5 were able to grow and produce their bacteriocins in MRS broth and in Macfarlane broth. Each of the three candidates inhibited L. ivanovii HPB 28, and this inhibition activity was correlated with bacteriocin production. The role of bacteriocin production in the inhibition of L. ivanovii in Macfarlane broth was confirmed for Ped. acidilactici UL5 using a pediocin nonproducer mutant.

Conclusions

The data provide some evidence that these bacteria can produce bacteriocins in a complex medium with carbon source similar to those found in the colon.

Significance and Impact of the Study

This study demonstrates the capacity of lactic acid bacteria to produce their bacteriocins in a medium simulating the nutrient composition of the large intestine.  相似文献   

14.

Background  

Chemokines are a large group of chemotactic cytokines that regulate and direct migration of leukocytes, activate inflammatory responses, and are involved in many other functions including regulation of tumor development. Interferon-gamma inducible-protein-10 (IP-10) is a member of the C-X-C subfamily of the chemokine family of cytokines. IP-10 specifically chemoattracts activated T lymphocytes, monocytes, and NK cells. IP-10 has been described also as a modulator of other antitumor cytokines. These properties make IP-10 a novel therapeutic molecule for the treatment of chronic and infectious diseases. Currently there are no suitable live biological systems to produce and secrete IP-10. Lactococcus lactis has been well-characterized over the years as a safe microorganism to produce heterologous proteins and to be used as a safe, live vaccine to deliver antigens and cytokines of interest. Here we report a recombinant strain of L. lactis genetically modified to produce and secrete biologically active IP-10.  相似文献   

15.

Background  

Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium.  相似文献   

16.

Background  

Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted.  相似文献   

17.

Background  

Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA) and minimization of metabolic adjustment (MOMA) were used as modeling frameworks.  相似文献   

18.
Purpose

The present study was undertaken to evaluate in vitro prerequisite probiotic and technological characteristics of ten Lactococcus strains isolated from traditional goat skin bags of Tulum cheeses from the Central Taurus mountain range in Turkey.

Methods

All isolates were identified based on the nucleotide sequences of the 16S rRNA gene. Eight isolates belonged to Lactococcus lactis and two belonged to Lactococcus garvieae. Probiotic potential was determined from resistance to acid and bile salt, resistance to gastric and pancreatic juices, resistance to antibiotic, auto-aggregation, co-aggregation, diacetyl, hydrogen peroxide and exopolysaccharide productions. Technological properties were verified by alcohol, NaCl and hydrogen peroxide resistance and temperature tests.

Results

L. lactis NTH7 displayed high growth at all alcohol concentrations while L. lactis NTH4 grew very well even at NaCl concentrations of 10%. All strains showed to some extent resistance to acid and bile. Five strains exhibited desirable survival in gastric juice (pH 2.0), while three strains survived in pancreatic juice (pH 8.0). All Lactococcus isolates were sensitive to ampicillin, chloramphenicol, erythromycin, vancomycin, kanamycin, gentamycin and tetracycline. Also, only L. lactis NTH7 from among the isolates showed resistance against penicillin. L. lactis NTH10 and L. lactis NTH7 had higher auto-aggregation values in comparison with all other strains. All the strains demonstrated a co-aggregation ability against model food pathogens, particularly, L. lactis NTH10 which showed a superior ability with L. monocytogenes. All the ten strains produced H2O2 and exopolysaccharide (EPS); however, diacetyl production was detected for only four strains including L. lactis NTH10.

Conclusion

These results demonstrate that the L. lactis NTH10 isolate could be regarded as a favorable probiotic candidate for future in vivo studies.

  相似文献   

19.

Background  

Lactic acid bacteria (LAB) are attractive tools to deliver therapeutic molecules at the mucosal level. The model LAB Lactococcus lactis has been intensively used to produce and deliver such heterologous proteins. However, compared to recombinant lactococci, lactobacilli offer some advantages such as better survival in the digestive tract and immunomodulatory properties. Here, we compared different strategies to optimize the production of bovine β-lactoglobulin (BLG), a major cow's milk allergen, in the probiotic strain Lactobacillus casei BL23.  相似文献   

20.

Background  

The nisin-controlled gene expression system NICE of Lactococcus lactis is one of the most widely used expression systems in Gram-positive bacteria. Despite its widespread use, no optimization of the culture conditions and nisin induction has been carried out to obtain maximum yields. As a model system induced production of lysostaphin, an antibacterial protein (mainly against Staphylococcus aureus) produced by S. simulans biovar. Staphylolyticus, was used. Three main areas need optimization for maximum yields: cell density, nisin-controlled induction and protein production, and parameters specific for the target-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号