首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
We determined the effect of coingestion of caffeine (Caff) with carbohydrate (CHO) on rates of muscle glycogen resynthesis during recovery from exhaustive exercise in seven trained subjects who completed two experimental trials in a randomized, double-blind crossover design. The evening before an experiment subjects performed intermittent exhaustive cycling and then consumed a low-CHO meal. The next morning subjects rode until volitional fatigue. On completion of this ride subjects consumed either CHO [4 g/kg body mass (BM)] or the same amount of CHO + Caff (8 mg/kg BM) during 4 h of passive recovery. Muscle biopsies and blood samples were taken at regular intervals throughout recovery. Muscle glycogen levels were similar at exhaustion [ approximately 75 mmol/kg dry wt (dw)] and increased by a similar amount ( approximately 80%) after 1 h of recovery (133 +/- 37.8 vs. 149 +/- 48 mmol/kg dw for CHO and Caff, respectively). After 4 h of recovery Caff resulted in higher glycogen accumulation (313 +/- 69 vs. 234 +/- 50 mmol/kg dw, P < 0.001). Accordingly, the overall rate of resynthesis for the 4-h recovery period was 66% higher in Caff compared with CHO (57.7 +/- 18.5 vs. 38.0 +/- 7.7 mmol x kg dw(-1) x h(-1), P < 0.05). After 1 h of recovery plasma Caff levels had increased to 31 +/- 11 microM (P < 0.001) and at the end of the recovery reached 77 +/- 11 microM (P < 0.001) with Caff. Phosphorylation of CaMK(Thr286) was similar after exercise and after 1 h of recovery, but after 4 h CaMK(Thr286) phosphorylation was higher in Caff than CHO (P < 0.05). Phosphorylation of AMP-activated protein kinase (AMPK)(Thr172) and Akt(Ser473) was similar for both treatments at all time points. We provide the first evidence that in trained subjects coingestion of large amounts of Caff (8 mg/kg BM) with CHO has an additive effect on rates of postexercise muscle glycogen accumulation compared with consumption of CHO alone.  相似文献   

2.
Eight endurance-trained men cycled to volitional exhaustion at 69 +/- 1% peak oxygen uptake on two occasions to examine the effect of carbohydrate supplementation during exercise on muscle energy metabolism. Subjects ingested an 8% carbohydrate solution (CHO trial) or a sweet placebo (Con trial) in a double-blind, randomized order, with vastus lateralis muscle biopsies (n = 7) obtained before and immediately after exercise. No differences in oxygen uptake, heart rate, or respiratory exchange ratio during exercise were observed between the trials. Exercise time to exhaustion was increased by approximately 30% when carbohydrate was ingested [199 +/- 21 vs. 152 +/- 9 (SE) min, P < 0.05]. Plasma glucose and insulin levels during exercise were higher and plasma free fatty acids lower in the CHO trial. No differences between trials were observed in the decreases in muscle glycogen and phosphocreatine or the increases in muscle lactate due to exercise. Muscle ATP levels were not altered by exercise in either trial. There was a small but significant increase in muscle inosine monophosphate levels at the point of exhaustion in both trials, and despite the subjects in CHO trial cycling 47 min longer, their muscle inosine monophosphate level was significantly lower than in the Con trial (CHO: 0.16 +/- 0.08, Con: 0.23 +/- 0.09 mmol/kg dry muscle). These data suggest that carbohydrate ingestion may increase endurance capacity, at least in part, by improving muscle energy balance.  相似文献   

3.
This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; approximately 78% carbohydrate) compared with a moderate-carbohydrate diet (MD; approximately 48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at approximately 80% maximal oxygen uptake (VO(2 max)) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 +/- 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 +/- 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 +/- 34.5; HCD, 80.3 +/- 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at approximately 80% VO(2 max) after the HCD vs. MD (115:31 +/- 10:47 vs. 106:35 +/- 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at approximately 80% VO(2 max).  相似文献   

4.
The purpose of the present study was to examine the duration of caffeine's ergogenic effect and whether it differs between users and nonusers of the drug. Twenty-one subjects (13 caffeine users and 8 nonusers) completed six randomized exercise rides to exhaustion at 80% of maximal oxygen consumption after ingesting either a placebo or 5 mg/kg of caffeine. Exercise to exhaustion was completed once per week at either 1, 3, or 6 h after placebo or drug ingestion. Exercise time to exhaustion differed between users and nonusers with the ergogenic effect being greater and lasting longer in nonusers. For the nonusers, exercise times 1, 3, and 6 h after caffeine ingestion were 32.7 +/- 8.4, 32.1 +/- 8.6, and 31.7 +/- 12.0 min, respectively, and these values were each significantly greater than the corresponding placebo values of 24.2 +/- 6.4, 25.8 +/- 9.0, and 23.2 +/- 7.1 min. For caffeine users, exercise times 1, 3, and 6 h after caffeine ingestion were 27.4 +/- 7.2, 28.1 +/- 7.8, and 24.5 +/- 7.6 min, respectively. Only exercise times 1 and 3 h after drug ingestion were significantly greater than the respective placebo trials of 23.3 +/- 6.5, 23.2 +/- 7.1, and 23.5 +/- 5.7 min. In conclusion, both the duration and magnitude of the ergogenic effect that followed a 5 mg/kg dose of caffeine were greater in the nonusers compared with the users.  相似文献   

5.
Jackman, M., P. Wendling, D. Friars, and T. E. Graham.Metabolic, catecholamine, and endurance responses to caffeine during intense exercise. J. Appl.Physiol. 81(4): 1658-1663, 1996.This studyexamined the possible effects of caffeine ingestion on muscle metabolism and endurance during brief intense exercise. We tested 14 subjects after they ingested placebo or caffeine (6 mg/kg) with anexercise protocol in which they cycled for 2 min, rested 6 min, cycled2 min, rested 6 min, and then cycled to voluntary exhaustion. In eachexercise the intensity required the subject's maximalO2 consumption. Eight subjects hadmuscle and venous blood samples taken before and after each exerciseperiod. The caffeine ingestion resulted in a significant increase inendurance (4.12 ± 0.36 and 4.93 ± 0.60 min for placebo andcaffeine, respectively) and resulted in a significant increase inplasma epinephrine concentration throughout the protocol but not innorepinephrine concentration. During the first two exercise bouts, thepower and work output were not different; blood lactate concentrationswere not affected significantly by caffeine ingestion, but during theexercise bouts muscle lactate concentration was significantly increasedby caffeine. The net decrease in muscle glycogen was not differentbetween treatments at any point in the protocol, and even at the time of fatigue there was at least 50% of the original glycogenconcentration remaining. The data demonstrated that caffeine ingestioncan be an effective ergogenic aid for exercise that is as brief as4-6 min. However, the mechanism is not associated with muscleglycogen sparing. It is possible that caffeine is exerting actionsdirectly on the active muscle and/or the neural processes thatare involved in the activity.

  相似文献   

6.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

7.
The mechanism of action underlying the ergogenic effect of caffeine is still unclear. Caffeine increases the force of muscular contraction during low-frequency stimulation by potentiating calcium release from the sarcoplasmic reticulum. Studies have also suggested an enhancement of lipid oxidation and glycogen sparing as potential mechanisms. Given that several studies have found an ergogenic effect of caffeine with no apparent metabolic effects, it is likely that a direct effect upon muscle is important. Twelve healthy male subjects were classified as habitual (n = 6) or nonhabitual (n = 6) caffeine consumers based on a 4-day diet record analysis, with a mean caffeine consumption of 771 and 14 mg/day for each group, respectively. Subjects were randomly allocated to receive caffeine (6 mg/kg) and placebo (citrate) in a double-blind, cross-over fashion approximately 100 min before a 2-min tetanic stimulation of the common peroneal nerve in a custom-made dynamometer (2 trials each of 20 and 40 Hz). Tetanic torque was measured every 30 s during and at 1, 5, and 15 min after the stimulation protocol. Maximal voluntary contraction strength and peak twitch torque were measured before and after the stimulation protocol. Caffeine potentiated the force of contraction during the final minute of the 20-Hz stimulation (P<0.05) with no effect of habituation. There was no effect of caffeine on 40-Hz stimulation strength nor was there an effect on maximal voluntary contraction or peak twitch torque. These data support the hypothesis that some of the ergogenic effect of caffeine in endurance exercise performance occurs directly at the skeletal muscle level.  相似文献   

8.
To examine the effect of exercise on heat shock protein (HSP) 72 mRNA expression in skeletal muscle, five healthy humans (20 +/- 1 yr; 64 +/- 3 kg; peak O(2) uptake of 2.55 +/- 0.2 l/min) cycled until exhaustion at a workload corresponding to 63% peak O(2) uptake. Muscle was sampled from the vastus lateralis, and muscle temperature was measured at rest (R), 10 min of exercise (Min10), approximately 40 min before fatigue (F-40 = 144 +/- 7 min), and fatigue (F = 186 +/- 15 min). Muscle samples were analyzed for HSP72 mRNA expression, as well as glycogen and lactate concentration. Muscle temperature increased (P < 0.05) during the first 10 min of exercise but then remained constant for the duration of the exercise. Similarly, lactate concentration increased (P < 0.05) when Min10 was compared with R but decreased (P < 0.05) thereafter, such that concentrations at F-40 and F were not different from those at R. In contrast, muscle glycogen concentration fell progressively throughout exercise (486 +/- 74 vs. 25 +/- 7 mmol/kg dry weight for R and F, respectively; P < 0.05). HSP72 mRNA was detected at R but did not increase by Min10. However, HSP72 mRNA increased (P < 0.05) 2.2 +/- 0.5- and 2.6 +/- 0.9-fold, respectively, when F-40 and F were compared with R. These data demonstrate that HSP72 mRNA increases progressively during acute cycling, suggesting that processes that take place throughout concentric exercise are capable of initiating a stress response.  相似文献   

9.
The hypothesis that fatigue during prolonged exercise arises from insufficient intramuscular glycogen, which limits tricarboxylic acid cycle (TCA) activity due to reduced TCA cycle intermediates (TCAI), was tested in this experiment. Seven endurance-trained men cycled at approximately 70% of peak O(2) uptake (Vo(2 peak)) until exhaustion with low (LG) or high (HG) preexercise intramuscular glycogen content. Muscle glycogen content was lower (P < 0.05) at fatigue than at rest in both trials. However, the increase in the sum of four measured TCAI (>70% of the total TCAI pool) from rest to 15 min of exercise was not different between trials, and TCAI content was similar after 103 +/- 15 min of exercise (2.62 +/- 0.31 and 2.59 +/- 0.28 mmol/kg dry wt for LG and HG, respectively), which was the point of volitional fatigue during LG. Subjects cycled for an additional 52 +/- 9 min during HG, and although glycogen was markedly reduced (P < 0.05) during this period, no further change in the TCAI pool was observed, thus demonstrating a clear dissociation between exercise duration and the size of the TCAI pool. Neither the total adenine nucleotide pool (TAN = ATP + ADP + AMP) nor IMP was altered compared with rest in either trial, whereas creatine phosphate levels were not different when values measured at fatigue were compared with those measured after 15 min of exercise. These data demonstrate that altered glycogen availability neither compromises TCAI pool expansion nor affects the TAN pool or creatine phosphate or IMP content during prolonged exercise to fatigue. Therefore, our data do not support the concept that a decrease in muscle TCAI during prolonged exercise in humans compromises aerobic energy provision or is the cause of fatigue.  相似文献   

10.
We investigated the effects of caffeine mouth rinse on endurance performance, muscle recruitment (i.e., electromyographic activity of the vastus lateralis and rectus femoris), rating of perceived effort and heart rate. Twelve physically-active healthy men cycled at 80% of their respiratory compensation point until task failure. The participants rinsed their mouths for 10 seconds with placebo (PLA, 25 mL of a solution composed of non-caloric mint essence) or caffeine (CAF, 25 mL of 1.2% of anhydrous caffeine concentration with non-caloric mint essence) every 15 minutes of exercise. Time until exhaustion increased 17% (effect size = 0.70) in CAF compared to PLA (p = 0.04). The wavebands of low-frequency electromyographic activity (EMG) of the vastus lateralis and rectus femoris was lower in CAF group than PLA at 50% of the time until exhaustion (p = 0.04). The global EMG signal was lower in CAF group than PLA at 100% of the time until exhaustion (p = 0.001). The rating of perceived effort pooled was higher in CAF mouth rinse (p = 0.001) than PLA group. No effect was found on the heart rate between the groups (p > 0.05). Caffeine mouth rinse increases endurance performance, rating of perceived effort and decreases muscle activity during a moderate-intensity exercise.  相似文献   

11.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

12.
Seven men were studied during maximal cycle ergometer exercise, to assess the effects of a single or continuous caffeine ingestion on performance and catecholamine secretion. A single blind and randomised procedure was followed with three trials at 100 +/- 5% VO2 max until exhaustion. The first trial was performed after a single administration of 250 mg of caffeine (a). The second and third trials were performed after a treatment of 5 days with 250 mg caffeine per day (continuous = c) and after placebo (p). a and c caffeine administration, 60 min prior to exercise, did not significantly change the time to exhaustion, but increased the plasma levels of both epinephrine (E) and norepinephrine (NE) at exhaustion (p less than 0.05). Single ingestion of caffeine accelerated the elimination of E and NE and increased the maximal blood lactic acid. These data suggest that both single and continuous administration of caffeine do not enhance performance during maximal cycle ergometer exercise, but do increase the exercise response of catecholamine. Only a single administration modifies the blood lactate accumulation.  相似文献   

13.
The stimulus for the release of 72-kDa heat shock protein (HSP72) during exercise in humans is currently unclear. Recent evidence in an animal model is suggestive of an involvement of catecholamines. The present study, therefore, investigated the effect of caffeine supplementation, a known stimulator of sympathetic activity, on the extracellular (e)HSP72 response to prolonged exercise. Ten healthy male endurance-trained cyclists were recruited (age: 21 +/- 1 yr, maximum O(2) uptake 61.1 +/- 1.7 ml x kg(-1) x min(-1), mean +/- SE). Each subject was randomly assigned to ingest either 6 mg/kg body mass of caffeine (Caff) or placebo (Pla) 60 min before one of two 90-min bouts of cycling at 74 +/- 1% maximum O(2) uptake. Trials were performed at least 7 days apart in a counterbalanced design. Venous blood samples were collected by venepuncture at pretreatment, preexercise, postexercise, and 1 h postexercise. Serum caffeine and plasma catecholamines were determined using a spectrophotometric assay and high-performance liquid chromatography, respectively. Plasma HSP72 and cortisol were determined by ELISA. Serum caffeine concentrations were significantly increased throughout Caff, while no increases were detected in Pla. Caffeine supplementation and exercise was associated with a greater eHSP72 response than exercise alone (postexercise Caff 8.6 +/- 1.3 ng/ml; Pla 5.9 +/- 0.9 ng/ml). This greater eHSP72 response was associated with a greater epinephrine response to exercise in Caff. There was a significant increase in norepinephrine and cortisol, with no intertrial differences. The present data suggest that, in humans, catecholamines may be an important mediator of the exercise-induced increase in eHSP72 concentration.  相似文献   

14.
This study compared the effects of a single and divided dose of caffeine on endurance performance and on postexercise urinary caffeine and plasma paraxanthine concentrations. Nine male cyclists and triathletes cycled for 90 min at 68% of maximal oxygen uptake, followed by a self-paced time trial (work equivalent to 80% of maximal oxygen uptake workload over 30 min) with three randomized, balanced, and double-blind interventions: 1) placebo 60 min before and 45 min into exercise (PP); 2) single caffeine dose (6 mg/kg) 60 min before exercise and placebo 45 min into exercise (CP); and 3) divided caffeine dose (3 mg/kg) 60 min before and 45 min into exercise (CC). Time trial performance was unchanged with caffeine ingestion (P = 0.08), but it tended to be faster in the caffeine trials (CP: 24.2 min and CC: 23.4 min) compared with placebo (PP: 28.3 min). Postexercise urinary caffeine concentration was significantly lower in CC (3.8 micro g/ml) compared with CP (6.8 micro g/ml). Plasma paraxanthine increased in a dose-dependent fashion and did not peak during exercise. In conclusion, dividing a caffeine dose provides no ergogenic effect over a bolus dose but reduces postexercise urinary concentration.  相似文献   

15.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on metabolic responses and endurance capacity during leg exercise were determined in eight untrained males (20-30 yr). During the 7 days before exercise, a high-carbohydrate diet was consumed (70% carbohydrate, 18% protein, 12% fat; 35 kcal/kg body weight). One hundred grams of either Polycose (placebo) or dihydroxyacetone and pyruvate (treatment, 3:1) were substituted for a portion of carbohydrate. Dietary conditions were randomized, and subjects consumed each diet separated by 7-14 days. After each diet, cycle ergometer exercise (70% of peak oxygen consumption) was performed to exhaustion. Biopsy of the vastus lateralis muscle was obtained before and after exercise. Blood samples were drawn through radial artery and femoral vein catheters at rest, after 30 min of exercise, and at exercise termination. Leg endurance was 66 +/- 4 and 79 +/- 2 min after placebo and DHAP, respectively (P less than 0.01). Muscle glycogen at rest and exhaustion did not differ between diets. Whole leg arteriovenous glucose difference was greater (P less than 0.05) for DHAP than for placebo at rest (0.36 +/- 0.05 vs. 0.19 +/- 0.07 mM) and after 30 min of exercise (1.06 +/- 0.14 vs. 0.65 +/- 0.10 mM) but did not differ at exhaustion. Plasma free fatty acids, glycerol, and beta-hydroxybutyrate were similar during rest and exercise for both diets. Estimated total glucose oxidation during exercise was 165 +/- 17 and 203 +/- 15 g after placebo and DHAP, respectively (P less than 0.05). It is concluded that feeding of DHAP for 7 days in conjunction with a high carbohydrate diet enhances leg exercise endurance capacity by increasing glucose extraction by muscle.  相似文献   

16.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

17.
Due to the current lack of clarity, we examined whether 5 days of dietary creatine (Cr) supplementation per se can influence the glycogen content of human skeletal muscle. Six healthy male volunteers participated in the study, reporting to the laboratory on four occasions to exercise to the point of volitional exhaustion, each after 3 days of a controlled normal habitual dietary intake. After a familiarization visit, participants cycled to exhaustion in the absence of any supplementation (N), and then 2 wk later again they cycled to exhaustion after 5 days of supplementation with simple sugars (CHO). Finally, after a further 2 wk, they again cycled to exhaustion after 5 days of Cr supplementation. Muscle samples were taken at rest before exercise, at the time point of exhaustion in visit 1, and at subsequent visit time of exhaustion. There was a treatment effect on muscle total Cr content in Cr compared with N and CHO supplementation (P < 0.01). Resting muscle glycogen content was elevated above N following CHO (P < 0.05) but not after Cr. At exhaustion following N, glycogen content was no different from CHO and Cr measured at the same time point during exercise. Cr supplementation under conditions of controlled habitual dietary intake had no effect on muscle glycogen content at rest or after exhaustive exercise. We suggest that any Cr-associated increases in muscle glycogen storage are the result of an interaction between Cr supplementation and other mediators of muscle glycogen storage.  相似文献   

18.
Seven subjects cycled to exhaustion [58 +/- 7 (SE) min] at approximately 75% of their maximal oxygen uptake (VO2max). Needle biopsy samples were taken from the quadriceps femoris muscle at rest, after 3, 10, and 40 min of exercise, at exhaustion, and after 10 min of recovery. After 3 min of exercise, a nearly complete transformation of the pyruvate dehydrogenase complex (PDC) into active form had occurred and was maintained throughout the exercise period. The total in vitro activated PDC was unchanged during exercise. The muscle concentration of acetyl-CoA increased from a resting value of 8.4 +/- 1.0 to 31.6 +/- 3.3 mumol/kg dry wt at exhaustion and that of acetylcarnitine from 2.9 +/- 0.7 to 15.6 +/- 1.6 mmol/kg dry wt. This was accompanied by corresponding decreases in reduced CoA (CoASH) from 45.3 +/- 3.1 to 25.9 +/- 3.1 mumol/kg dry wt and in free carnitine from 18.8 +/- 0.7 to 5.7 +/- 0.5 mmol/kg dry wt. Acetyl group accumulation, in the form of acetyl-CoA and acetylcarnitine, was maintained throughout exercise to exhaustion while the glycogen content decreased by 90%. This suggests that availability of acetyl groups was not limiting to exercise performance despite the nearly total depletion of the glycogen store. The increased acetyl-CoA-to-CoASH ratio during exercise caused inhibition of neither the PDC transformation nor the calculated catalytic activity of active PDC.  相似文献   

19.
During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise.  相似文献   

20.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号