首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Na+/Ca2+ exchanger is the major Ca2+ extrusion mechanism in cardiac myocytes. The activity of the cardiac Na+/Ca2+ exchanger is dynamically regulated by intracellular Ca2+. Previous studies indicate that Ca2+ binding to a high-affinity Ca2+-binding domain (CBD1) in the large intracellular loop is involved in regulation. We generated transgenic zebrafish with cardiac-specific expression of CBD1 linked to yellow and cyan fluorescent protein. Ca2+ binding to CBD1 induces conformational changes, as detected by fluorescence resonance energy transfer. With this transgenic fish model, we were able to monitor conformational changes of the Ca2+ regulatory domain of Na+/Ca2+ exchanger in intact hearts. Treatment with the positive inotropic agents ouabain and isoproterenol increased both Ca2+ transients and Ca2+-induced changes in fluorescence resonance energy transfer. The results indicate that Ca2+ regulation of the Na+/Ca2+ exchanger domain CBD1 changes with inotropic state. The transgenic fish models will be useful to further characterize the regulatory properties of the Na+/Ca2+ exchanger in vivo. Ca2+-binding domain; sodium/calcium exchange; zebrafish; fluorescence resonance energy transfer  相似文献   

2.
A calmodulin like domain protein kinase (CPK) homologue wasidentified in alfalfa and termed MsCPK3. The full-length sequenceof cDNA encoded a 535 amino acid polypeptide with a molecularweight of 60.2 kDa. The deduced amino acid sequence showed allthe conserved motifs that define other members of this kinasefamily, such as serine-threonine kinase domain, a junction regionand four potential Ca2+-binding EF sites. The recombinant MsCPK3protein purified from E. coli was activated by Ca2+and inhibitedby calmodulin antagonist (W-7) in in vitro phosphorylation assays.The expression of MsCPK3 gene increased in the early phase ofthe 2,4-D induced alfalfa somatic embryogenesis. Heat shockalso activated this gene while kinetin, ABA and NaCl treatmentdid not result in MsCPK3 mRNA accumulation. The data presentedsuggest that the new alfalfa CPK differs in stress responsesfrom the previously described homologues and in its potentialinvolvement in hormone and stress-activated reprogramming ofdevelopmental pathways during somatic embryogenesis. Key words: Medicago sativa, CPK, stress, 2,4-D, phosphorylation, somatic embryogenesis.  相似文献   

3.
A cyaC gene encoding an adenylate cyclase of the filamentouscyanobacterium Spirulina platensis was se-quenced. The predictedamino acid sequence of the C-ter-minal region of cyaC is similarto the catalytic domains of adenylate cyclases in other cyanobacteriaand eukaryotes. The sequences of other regions are similar tothose of proteins consisting of the bacterial two-componentsignal transduction system: the sensory kinase and the responseregulator. The predicted gene product of cyaC contains, fromthe N-terminal end, a receiver domain of the response regulatorprotein (Rl), a domain similar to the ETR1 of Arabi-dopsis thaliana,a transmitter domain of the sensory kinase protein, a receiverdomain of the response regulator protein (R2), and a catalyticdomain of adenylate cyclase. The cyaC gene was expressed asan affinity-tagged protein in Escherichia coli, and the recombinantprotein was purified. The purified protein had adenylate cyclaseactivity which was activated by Mn2+. The results of Westernblotting using an anti-CyaC antiserum and the S. platensis cellextract confirmed that cyaC gene is expressed in S. platensis (Received February 27, 1997; Accepted April 26, 1997)  相似文献   

4.
Caloxin: a novel plasma membrane Ca2+ pump inhibitor   总被引:1,自引:0,他引:1  
Plasma membrane (PM) Ca2+ pump is aCa2+-Mg2+-ATPase that expels Ca2+from cells to help them maintain low concentrations of cytosolic Ca2+. There are no known extracellularly acting PMCa2+ pump inhibitors, as digoxin and ouabain are forNa+ pump. In analogy with digoxin, we define caloxins asextracellular PM Ca2+ pump inhibitors and describe caloxin2A1. Caloxin 2A1 is a peptide obtained by screening a random peptidephage display library for binding to the second extracellular domain(residues 401-413) sequence of PM Ca2+ pump isoform1b. Caloxin 2A1 inhibits Ca2+-Mg2+-ATPase inhuman erythrocyte leaky ghosts, but it does not affect basalMg2+-ATPase or Na+-K+-ATPase in theghosts or Ca2+-Mg2+-ATPase in the skeletalmuscle sarcoplasmic reticulum. Caloxin 2A1 also inhibitsCa2+-dependent formation of the 140-kDa acid-stableacylphosphate, which is a partial reaction of this enzyme. Consistentwith inhibition of the PM Ca2+ pump in vascularendothelium, caloxin 2A1 produces an endothelium-dependent relaxationthat is reversed byNG-nitro-L-arginine methyl ester.Thus caloxin 2A1 is a novel PM Ca2+ pump inhibitor selectedfor binding to an extracellular domain.

  相似文献   

5.
H+ transport in the collecting duct is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE fusion complexes through the H3 domain; only syntaxin 1A, through its H3 domain, also binds H+-ATPase. This raised the possibility that there are separate binding sites within the H3 domain of syntaxin 1A for H+-ATPase and for SNARE proteins. A series of truncations in the H3 domain of syntaxin 1A were made and expressed as glutathione S-transferase (GST) fusion proteins. We determined the amount of H+-ATPase and SNARE proteins in rat kidney homogenate that complexed with GST-syntaxin molecules. Full-length syntaxin isoforms and syntaxin-1AC [amino acids (aa) 1–264] formed complexes with H+-ATPase and SNAP23 and vesicle-associated membrane polypeptide (VAMP). A cassette within the H3 portion was found that bound H+-ATPase (aa 235–264) and another that bound SNAP23 and VAMP (aa 190–234) to an equivalent degree as full-length syntaxin. However, the aa 235–264 cassette alone without the SNARE N (aa 1–160) does not bind but requires ligation to the SNARE N to bind H+-ATPase. When this chimerical construct was transected into inner medullary collecting duct cells it inhibited intracellular pH recovery, an index of H+-ATPase mediated secretion. We conclude that within the H3 domain of syntaxin 1A is a unique cassette that participates in the binding of the H+-ATPase to the apical membrane and confers specificity of syntaxin 1A in the process of H+-ATPase exocytosis. soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor proteins; exocytosis; H++ transport  相似文献   

6.
We obtained a mutant of bacteriophage T4 which overcame thedeficiency in gene 49 endonuclease. The new mutation occurredin gene 32 and the mutant, which was viable, produced an amberfragment under non-suppressed conditions, lacking about 30 aminoacid residues at the carboxyl terminus. Its growth, recombination,and resistance to UV irradiation were affected to various degreesby the particular suppressor tRNA present. Growth was increasedby Su2+ to nearly that of the wild type, but growth of all otherswas reduced in the presence and absence of suppressors, suggestingthat the terminal domain of gene 32 protein is not indispensablefor the function but modulates it. We discuss the mechanismby which the mutation overcomes the defect in gene 49 endonuclease. 1 This paper is dedicated to the memory of the late Dr. JojiAshida. (Received November 22, 1982; Accepted February 21, 1983)  相似文献   

7.
A tapetum-specific cDNA encoded by a rice gene, RA39, was isolated by cDNA subtractive hybridization, differential screening and rapid amplification of cDNA ends. RA39 is a single-copy gene in the rice genome. mRNA in situ hybridization indicates that this gene is a tapetum-specific gene, and highly expressed in the tapetal cells at the meiosis and tetrad stages. The RA39 cDNA is 1,013 bp in length with an open reading frame encoding 298 amino acid residues. This cDNA sequence does not show significant homology to any known sequences in GenBank databases, but its deduced amino acid sequence (RA39) has between 19 and 34% sequence identity to ribosome-inactivating proteins (RIPs). Optimal alignment reveals that the five amino acid residues constituting the active site of the ricin A-chain (Tyr80, Tyr123, Glu177, Arg180 and Trp211), which are invariant among all RIPs published to date, are conserved in RA39. Recombinant RA39 protein expressed in Escherichia coli was purified to homogeneity. The purified protein exhibits the RNA N-glycosidase activity of RIPs. This demonstrates that RIPs occur in the reproductive organs of rice. The possible function of RA39 in anther development is discussed.  相似文献   

8.
9.
The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is 150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration. muscle plasticity; NFATc1; resting calcium concentration  相似文献   

10.
Experiments were performedto determine whether the organic Ca2+ channel blocker D-600(gallopamil), which penetrates into muscle cells, affects sarcoplasmicreticulum (SR) Ca2+ uptake by directly inhibiting the lightSR Ca2+-ATPase. We have previously shown that at 10 µM,D-600 inhibits LSR ATP-dependent Ca2+ uptake by 50% buthas no effect on ATPase activity (21). These data suggestthat the SR Ca2+-ATPase might be a potential target forD-600. The ATPase activity of the enzyme is associated with itshydrophilic cytoplasmic domain, whereas Ca2+ binding andtranslocation are associated with the transmembrane domain(18). In the present experiments, we determined which of the two domains of the ATPase is affected by D-600. Thermalinactivation experiments using the SR Ca2+-ATPasedemonstrated that D-600 decreased the thermal stability ofCa2+ transport but had no effect on the stability of ATPaseactivity. In addition, D-600 at a concentration of 160 µM did nothave any leaking effect of Ca2+ on theCa2+-loaded SR. Thermal denaturation profiles of SRmembranes revealed that D-600 interacts directly with the transmembranedomain of the Ca2+-ATPase. No evidence for interaction withthe nucleotide domain was obtained. We conclude that theCa2+ blocker D-600 inhibits the SR Ca2+ pumpspecifically by interacting with the transmembraneCa2+-binding domain of the Ca2+-ATPase.

  相似文献   

11.
12.
Vasopressin-activated Ca2+-mobilizing (VACM)-1 gene product is a 780-amino acid membrane protein that shares sequence homology with cullins, a family of genes involved in the regulation of cell cycle. However, when expressed in vitro, VACM-1 attenuates basal and vasopressin- and forskolin-induced cAMP production. Mutating the PKA-dependent phosphorylation site in the VACM-1 sequence (S730AVACM-1) prevents this inhibitory effect. To further examine the biological role of VACM-1, we studied the effect of VACM-1 and S730AVACM-1 proteins on cellular proliferation and gene expression in Chinese hamster ovary and COS-1 cells. Cellular proliferation of VACM-1-expressing cell lines was significantly lower compared with that of the vector-transfected cells, whereas it was significantly increased in S730AVACM-1-derived cell lines. Furthermore, expression of VACM-1 but not S730AVACM-1 protein retarded cytokinesis and prevented MAPK phosphorylation. Screening with the Human PathwayFinder-1 GEArray system and subsequent Western blot analysis demonstrated that VACM-1 induces p53 mRNA and protein expression. In summary, VACM-1 inhibits cellular growth by a mechanism that involves cAMP, MAPK phosphorylation, and p53 expression. mitogen-activated protein kinase; cytokinesis; vasopressin-activated calcium-mobilizing receptor  相似文献   

13.
Molecular Characterization of the waxy Locus of Rice (Oryza sativa)   总被引:10,自引:0,他引:10  
  相似文献   

14.
15.
We have isolated a cDNA clone (cdc2Nt1) that encodes a homologof p34cdc2/CDC28 kinase from tobacco (Nicotiana tabacum). Thecdc2Ntl protein showed extensive similarity to other homologsof Cdc2 from plants. Complementation studies showed that thecdc2Ntl gene was able to overcome cell cycle arrest at boththe G1/S and the G2/M transitions of cdc28ts mutants of buddingyeast, demonstrating that the cdc2Ntl protein was able to replacethe Cdc28 kinase at both the G1/S and the G2/M transitions.Analysis of gene expression demonstrated that the cdc2Ntl genewas transcribed constitutively throughout the cell cycle butthat it was preferentially expressed in actively dividing tobaccoBY-2 cells. (Received July 13, 1995; Accepted February 15, 1996)  相似文献   

16.
Mutations in the central domain of the skeletal muscle ryanodinereceptor (RyR) cause malignant hyperthermia (MH). A synthetic peptide(DP4) in this domain (Leu-2442-Pro-2477) produces enhanced ryanodine binding and sensitized Ca2+ release in isolatedsarcoplasmic reticulum, similar to the properties in MH, possiblybecause the peptide disrupts the normal interdomain interactions thatstabilize the closed state of the RyR (Yamamoto T, El-Hayek R, andIkemoto N. J Biol Chem 275: 11618-11625, 2000). Here, DP4 was applied to mechanically skinned fibers of rat muscle thathad the normal excitation-contraction coupling mechanism stillfunctional to determine whether muscle fiber responsiveness wasenhanced. DP4 (100 µM) substantially potentiated the Ca2+release and force response to caffeine (8 mM) and to low[Mg2+] (0.2 mM) in every fiber examined, with nosignificant effect on the properties of the contractile apparatus. DP4also potentiated the response to submaximal depolarization of thetransverse tubular system by ionic substitution. Importantly, DP4 didnot significantly alter the size of the twitch response elicited byaction potential stimulation. These results support the proposal thatDP4 causes an MH-like aberration in RyR function and are consistentwith the voltage sensor triggering Ca2+ release bydestabilizing the closed state of the RyRs.

  相似文献   

17.
The renal outermedulla K+ channel (ROMK) familyof K+ channels may constitute amajor pathway for K+ secretion inthe distal nephron. To date, four main isoforms of this gene have beenidentified in the rat that differ only in theirNH2-terminal amino acids and thatshare a common "core exon" that determines the remaining proteinsequence. Using RT-PCR, we have identified a new set of ROMK isoformsin rat kidney that are generated by the deletion of a region within theROMK core sequence that is identifiable as a typical mammalian intron.This splicing event was shown to be reproducible in vitro by detection of deleted ROMK mRNA in Madin-Darby canine kidney (MDCK) cells stablytransfected with the gene for ROMK2. Translation of the deletionvariant of ROMK2 was confirmed in vitro and visualized in MDCK cellsfollowing transient transfection with an enhanced green fluorescentprotein tag. The deletion in this core region is predicted to generatehydrophilic proteins that are approximately one-third of the size ofnative ROMK and lack membrane-spanning domains.  相似文献   

18.
The 5'-upstream region of a winged bean chymotrypsin inhibitorgene (WCI-3b) was found to have a high affinity for nuclearmatrix. The region, named WCI-3b MAR (matrix attachment region),is highly A+T-rich and contains multiple sites interacting withnuclear matrix. A MAR was also found in the corresponding regionof the WCI-x gene, another active gene of the WCI family. SeveralMAR-binding proteins were detected in the wheat nuclear matrix. 4Present address: Friedrich Miescher Institute, P.O. Box 2543,CH-4002 Basel, Switzerland. 5Present address: Research Institute for Biological Sciences(RIBS), Kayo-cho, Jyobo-gun, Okayama, 716–1241 Japan.  相似文献   

19.
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain.

  相似文献   

20.
The waxy (wx) locus, which controls the amylose synthesis, isknown to be expressed specifically in the endosperm and pollen.To study the tissue-specific regulation of the wx+ gene, weintroduced a fusion gene that consisted of the upstream sequenceof the wx+ gene and the gene for rß-glucuronidase(GUS) into cells of rice (Oryza sativa L.) and petunia (Petuniahybrida L.). GUS activity was examined in the regenerated transgenicrice and petunia plants. In transgenic rice, the upstream sequenceof the wx+ gene was sufficient to direct the tissue-specificexpression of GUS in the endosperm and pollen, and the controlof expression was quantitative. By contrast, in transgenic petunia,the same fusion gene was expressed in pollen but not in theendosperm. These results suggest that the putative cis-actingelements that direct pollen-specific expression are common toor similar in both monocotyledonous and dicotyledonous plants,whereas ciy-elements responsible for the endosperm-specificexpression of the rice wx+ gene do not function in petunia,in which development of the endosperm differs from that in rice. 4Present address: Division of Biological Sciences, GraduateSchool of Science, Hokkaido University, Kita-ku, Sapporo, 060Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号