首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The structure of the nonclassical πκ base pair (7–methyl-oxoformycin … 2,4-diaminopyrimidine) was studied at the ab initio Hartree-Fock (HF) and MP2 levels using the 6–31G* and 6–31G** basis sets. The πκ base pair is bound by three parallel hydrogen bonds with the donor-acceptor-donor recognition pattern. Recently, these bases were proposed as an extension of the genetic alphabet from four to six letters (Piccirilli et al. Nature 343, 33(1990)). By the HF/6- 31G* method with full geometry optimization we calculated the 12 degree propeller twist for the minimum energy structure of this complex. The linearity of hydrogen bonds is preserved in the twisted structure by virtue of the pyramidal arrangement of the κ-base amino groups. The rings of both the π and κ molecules remain nearly planar. This nonplanar structure of the πκ base pair is only 0.1 kcal/mol more stable than the planar (Cs) conformation. The HF/6- 31G* level gas-phase interaction energy of πκ (—13.5 kcal/mol) calculated by us turned out to be nearly the same as the interaction energy obtained previously for the adenine-thymine base pair (—13.4 kcal/mol) at the same computational level. The inclusion of p-polarization functions on hydrogens, electron correlation effects (MP2/6–31G** level), and the correction for the basis set superposition error (BSSE) increase this energy to -14.0 kcal/mol.  相似文献   

2.
Abstract

Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order Møller-Plesset perturbation method at the 6–31G(d) and 6- 31G(d,p) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs; while HF and DFT methods predict perfect planar or almost planar geometry of the base pairs. Supposedly the nonplanarity of the pairs is caused by pyramidalization of the amino nitrogen atoms, which is underestimated by the HF and DFT methods. This justifies the importance of geometry optimization at the MP2 level for obtaining reliable prediction of the charge distribution, molecular dipole moments and geometrical structure of the base pairs. The Morokuma-Kitaura and the Reduced Variational Space methods of the decomposition for molecular HF interaction energies were used for investigation of the hydrogen bonding in the Watson-Crick base pairs. It is shown that the HF stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time, the calculated magnitude of the second order intramolecular correlation correction to the Coulomb energy showed that electron correlation reduces the contribution of the electrostatic term to the attractive interaction for the A-T and G-C base pairs. Polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.  相似文献   

3.
Abstract

The molecular structure and relative stability of north and south conformers of 2′-deoxyribonucleotides containing pyrimidine nucleic acid bases (2′-deoxythymidilic (pdT), 2′- deoxycytidilic (pdC) acids and their mono- and dianions) have been obtained and analyzed at the DFT/B3LYP level using the standard 6–31G(d) basis set. We have revealed that, when the nucleobase moiety is incorporated into the nucleotides, it maintains a nonplanar and nonrigid conformation due to out-of-plane deformation of the amino group and pyrimidine ring. It has been demonstrated that an increase of negative charge of the phosphate group results in increase of amino group pyramidalization, discrimination between conformers with syn and anti orientation of base with respect to sugar, strengthening of intramolecular C-H…O hydrogen bonds leading to deformation and fixation of geometry of nucleotides, and weakening of phosphodiester bond. These results allow to make suggestions about sources of twist and buckle deformations of base pairs, mechanisms of repaire of DNA via change of base orientation, and conditions for breakage of the P-O bonds during hydrolysis.  相似文献   

4.
Abstract

Ab initio quantum-chemical calculations with inclusion of electron correlation made since 1994 (such reliable calculations were not feasible before) significantly modified our view on interactions of nucleic acid bases. These calculations allowed to perform the first reliable comparison of the strength of stacked and hydrogen bonded pairs of nucleic acid bases, and to characterize the nature of the base-base interactions. Although hydrogen-bonded complexes of nucleobases are primarily stabilized by the electrostatic interaction, the dispersion attraction is also important. The stacked pairs are stabilized by dispersion attraction, however, the mutual orientation of stacked bases is determined rather by the electrostatic energy. Some popular theories of stacking were ruled out: The theory based on attractive interactions of polar exocyclic groups of bases with delocalized electrons of the aromatic rings (Bugg et al., Biopolymers 10, 175 (1971).), and the II-II interactions model (C.A. Hunter, J. Mol. Biol. 230, 1025 (1993)). The calculations demonstrated that amino groups of nucleobases are very flexible and intrinsically nonplanar, allowing hydrogen-bond-like interactions which are oriented out of the plane of the nucleobase. Many H-bonded DNA base pairs are intrinsically nonplanar. Higher-level ab initio calculations provide a unique set of reliable and consistent data for parametrization and verification of empirical potentials. In this article, we present a short survey of the recent calculations, and discuss their significance and limitations. This summary is written for readers which are not experts in computational quantum chemistry.  相似文献   

5.
Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order M?ller-Plesset perturbation method at the 6-31G(d) and 6-31G(d,p) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs; while HF and DFT methods predict perfect planar or almost planar geometry of the base pairs. Supposedly the nonplanarity of the pairs is caused by pyramidalization of the amino nitrogen atoms, which is underestimated by the HF and DFT methods. This justifies the importance of geometry optimization at the MP2 level for obtaining reliable prediction of the charge distribution, molecular dipole moments and geometrical structure of the base pairs. The Morokuma-Kitaura and the Reduced Variational Space methods of the decomposition for molecular HF interaction energies were used for investigation of the hydrogen bonding in the Watson-Crick base pairs. It is shown that the HF stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time, the calculated magnitude of the second order intramolecular correlation correction to the Coulomb energy showed that electron correlation reduces the contribution of the electrostatic term to the attractive interaction for the A-T and G-C base pairs. Polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.  相似文献   

6.
N V Kumar  G Govil 《Biopolymers》1984,23(10):1995-2008
With a view to understanding the role of hydrogen bonds in the recognition of nucleic acids by proteins, hydrogen bonding between the bases and base pairs of nucleic acids and the amino acids (Asn, Gln, Asp and Glu, and charged residues Arg+, Glu?, and Asp?) has been studied by a second-order perturbation theory. Binding energies have been calculated for all possible configurations involving a pair of hydrogen bonds between the base (or base pair) and the amino acid residue. Our results show that the hydrogen bonding in these cases has a large contribution from electrostatic interaction. In general, the charged amino acids, compared to the uncharged ones, form more stable complexes with bases or base pairs. The hydrogen-bond energies are an order of magnitude smaller than the Coulombic interaction energies between basic amino acids (Lys+, Arg+, and His+) and the phosphate groups of nucleic acids. The stabilities of the complexes of amino acids Asn, Gln, Asp, and Glu with bases are in the order: G–X > C–X > A–X U–X or T–X, and G · C–X > A · T(U)–X, where X is one of these amino acid residues. It has been shown that Glu? and Asp? can recognize guanine in single-stranded nucleic acids; Arg+ can recognize G · C base pairs from A · T base pairs in double-stranded structures.  相似文献   

7.
Abstract

Neutral (G.GC, A. AT, G.AT, T. AT, and C (imino).GC) and protonated (CH+.GC and AH+.GC) hydrogen-bonded trimers of nucleic acid bases were characterized by ab initio methods with the inclusion of electron correlation. In addition, the influence of metal cations on the third-strand binding in Purine-Purine-Pyrimidine (Pu.PuPy) reverse-Hoogsteen triplets has been studied. The ab initio calculations were compared with those from recently introduced force fields (AMBER4.1, CHARMM23, and CFF95). The three-body term in neutral trimers is mostly negligible, and the use of empirical potentials is justified. The only exception is the neutral G.GC Hoogsteen trimer with a three-body term of -4 kcal/mol. Protonated trimers are stabilized by molecular ion—;molecular dipole attraction and the interaction within the complex is nonadditive, with the three-body term on the order of -3 kcal/mol. There is a significant induction interaction between the third-strand protonated base and guanine. The calculations indicate an enhancement of the third-strand binding in the G.GC reverse-Hoogsteen trimer due to metal cation coordination to the N7/06 position of the third-strand guanine. Interactions between metal cations and complexes of DNA bases are in general highly nonadditive; the three-body term is above -10 kcal/mol in a complex of a divalent cation (Ca2+) with the GG reverse-Hoogsteen pair. The pairwise additive empirical potentials qualitatively underestimate the binding energy between cation and base.  相似文献   

8.
Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from single-stranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by ~3 kcal mol(-1) (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.  相似文献   

9.
Abstract

Energy of interaction between nitrogen bases of nucleic acids has been calculated as a function of parameters determining the mutual position of two bases. Refined atom-atom potential functions are suggested. These functions contain terms proportional to the first (electrostatics), sixth (or tenth for the atoms forming a hydrogen bond) and twelfth (repulsion of all atoms) powers of interatomic distance. Calculations have shown that there are two groups of minima of the base interaction energy. The minima of the first group correspond to coplanar arrangement of the base pairs and hydrogen bond formation. The minima of the second group correspond to the position of bases one above the other in almost parallel planes. There are 28 energy minima corresponding to the formation of coplanar pairs with two (three for the G:C pair) almost linear N-H … O and (or) N-H … N hydrogen bonds. The position of nitrogen bases paired by two such H-bonds in any crystal of nucleic acid component, in polynucleotide complexes and in tRNA is close to the position in one of these minima. Besides, for each pair there are energy minima corresponding to the formation of a single N-H … O or N-H … N and one C-H … O or C-H … N hydrogen bond. The form of potential surface in the vicinity of minima has been characterized. The results of calculations agree with the experimental data and with more rigorous calculations based on quantum- mechanical approach.  相似文献   

10.
Sühnel J 《Biopolymers》2001,61(1):32-51
Hydrogen-bonded base pairs are an important determinant of nucleic acid structure and function. However, other interactions such as base-base stacking, base-backbone, and backbone-backbone interactions as well as effects exerted by the solvent and by metal or NH(4)(+) ions also have to be taken into account. In addition, hydrogen-bonded base complexes involving more than two bases can occur. With the rapidly increasing number and structural diversity of nucleic acid structures known at atomic detail higher-order hydrogen-bonded base complexes, base polyads, have attracted much interest. This review provides an overview on the occurrence of base polyads in nucleic acid structures and describes computational studies on these nucleic acid building blocks.  相似文献   

11.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

12.
The puckering transitions of pesudoprolines such as oxazolidine and thiazolidine residues (Oxa and Thz dipeptides) with trans and cis prolyl peptide bonds were explored by optimizations along the endocyclic torsion angle χ1 using quantum‐chemical methods in the gas phase and in water. The overall shapes of the potential energy surfaces for Oxa and Thz dipeptides in the gas phase and in water are similar to those for the Pro dipeptide, although there are some differences in relative stabilities of local minima and in barriers to puckering transition. On the whole, the barriers to puckering transition for Oxa and Thz dipeptides are computed to be 0.8–3.2 kcal/mol at the B3LYP/6‐311++G(d,p) level in the gas phase and in water, which are lower by 0.5–1.9 kcal/mol than those for the Pro dipeptide. The n → σ* interactions for the delocalization of the lone pair of the prolyl amide nitrogen into the antibonding orbitals that are anti to the lone pair appear to play a role in stabilizing the nonplanar puckered transition states over the corresponding planar structures. The calculated barriers indicate that the down‐to‐up puckering transition can proceed in the orders Pro < Oxa < Thz in the gas phase and Pro ≈ Oxa < Thz in water. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 444–455, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Abstract

Perturbation of the hydrogen bonds in the adenine…thymine base pair by Na+, Mg2+, Ca2+ and NH4 + cations has been investigated by means of ab initio SCF calculations with the STO-3G basis set. The geometry of adenine…thymine, as well as those of the perturbed pairs were optimized. Approach of any cation to thymine at 06 leads to destabilization of the adenine…thy mine pair; divalent cations (Mg2+, Ca2+) have a profound effect on the structure of the base pair. The approach of a cation to other available sites (thymine: O2, adenine N1 and N3) leads, on the other hand, to stabilization of the base pair. If a water molecule is placed between the cation and the base pair, the structure and stability of the base pair are changed only negligibly.  相似文献   

14.
We determined the melting temperatures (Tm) and thermodynamic parameters of 15 RNA and 19 DNA hairpins at 1 M NaCl, 0.01 M sodium phosphate, 0.1 mM EDTA, at pH 7. All these hairpins have loops of four bases, the most common loop size in 16S and 23S ribosomal RNAs. The RNA hairpins varied in loop sequence, loop-closing base pair (A.U, C.G, or G.C), base sequence of the stem, and stem size (four or five base pairs). The DNA hairpins varied in loop sequence, loop-closing base pair (C.G, or G.C), and base sequence of the four base-pair stem. Thermodynamic properties of a hairpin may be represented by nearest-neighbor interactions of the stem plus contributions from the loop. Thus, we obtained thermodynamic parameters for the formation of RNA and DNA tetraloops. For the tetraloops we studied, a free energy of loop formation (at 37 degrees C) of about +3 kcal/mol is most common for either RNA or DNA. There are extra stable loops with delta G degrees 37 near +1 kcal/mol, but the sequences are not necessarily the same for RNA and DNA. The closing base pair is also important; changing from C.G to G.C lowered the stability of several tetraloops in both RNA and DNA. These values will be useful in predicting RNA and DNA secondary structures.  相似文献   

15.
Abstract

This report describes an infrared (IR) spectroscopic study of a model cytosine - guanine base pair. This base pair is part of a self-consistent experimental system based on lipophilic ribose derivatives of cytidine (C), guanosine (G) and O6-methylguanosine (O6MeG) that are soluble in non-aqueous, low dielectric solvents at appreciable concentrations. Previous experiments on this system have revealed different rotation dynamics for the amino bonds within the CG base pair, an observation that could be explained by the presence of rare tautomers (P.O. Lowdin, Reviews of Modern Physics 35, 724 (1963)), or by mutual polarization of the base pairs (L.D. Williams, N.G. Williams and B.R. Shaw, J. Am. Chem. Soc. 112, 829 (1990)). The IR spectra in the OH and NH stretching region indicate formation of hydrogen-bonded CG base pairs and self associates in 1,2-dichlorobenzene over a temperature range from 10 to 290K. Changes in the lineshapes and intensities of the IR bands with temperature correlate with phase transitions of the solvent but no evidence is seen for an OH stretching band that would indicate the formation of hydroxyl tautomers within base pairs. Similarly, the relative intensities of the C=O stretching bands of CG in cyclohexane solution remain constant over this same temperature range, confirming that within the base pair, the tautomeric states of the bases remain essentially unperturbed in the 2-amino/6-keto form of G and the 2-keto/4-amino form of C. The spectra of O6-MeG aid in the band assignments, since this molecule is frozen in an equivalent of the 2-amino/6-hydroxyl tautomer, but without the OH group and its associated stretching band. We conclude that the probability of tautomerism does not appear to be sufficient to explain the different rotation dynamics for the two amino bonds of the CG base pair. Rather it is argued that mutual polarization within the base pair, which would increase the bond order of the amino bond of C within the base pair, can explain the results without the formation of unconventional tautomers.  相似文献   

16.
Abstract

A constrained model building procedure is used to generate nucleic acid structures of the familiar A-, B-, and Z-DNA duplexes. Attention is focused upon the multiple structural solutions associated with the arrangements of nucleic acid base pairs rather than the optimum sugar-phosphate structure. The glycosyl (χ) and sugar torsions (both the ring puckering and the exocyclic C5′-C4′ (ψ) torsion) are treated as independent variables and the resulting O3′…O5′ distances are used as closure determinants. When such distances conform to the known geometry of phosphate chemical bonding, an intervening phosphorus atom with correct C-O-P valence angles can be located. Four sequential torsion angles- φ,ω,ω,ω and φ about the C3′-O3′-P-O5′-C5′ bonds are then obtained as dependent variables. The resulting structures are categorized in terms of conformation, ranked in potential energy, and analyzed for torsional correlations. The numerical results are quite interesting with implications regarding nucleic acid models constructed to fit less than ideal experimental data. The multiple solutions to the problem are useful for comprehending the conformational complexities of thelocal sugar-phosphate backbone and for understanding the transitions between different helical forms. According to these studies, unique characterization of a nucleic acid duplex involves more than the determination of its base pair morphology, its sugar puckering preferences, or its groove binding features.  相似文献   

17.
Abstract

While it is well established that classical hydrogen bonds play an important role in enzyme structure, function and dynamics, the role of weaker, but ‘activated’ C-H donor hydrogen bonds is poorly understood. The most important such case involves histidine which often plays a direct role in enzyme catalysis and possesses the most acidic C-H donor group of the standard amino acids. In the present study, we obtained optimized geometries and hydrogen bond interaction energies for C-H…O hydrogen bonded complexes between methane, ethylene, benzene, acetylene, and imidazole with water at the MP2-FC/6-31++G(2d,2p) and MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) levels of theory. A strong linear relationship is obtained between the stability of the various hydrogen bonded complexes and both separation distances for H…0 and C—O. In general, these calculations indicate that C-H…0 interactions can be classified as hydrogen bonding interactions, albeit significantly weaker than the classical hydrogen bonds, but significantly stronger than just van der Waals interactions. For instance, while the electronic energy of stabilization at the MP2-FC/aug-cc-pVDZ//MP2-FC/6-31++G(2d,2p) level of theory of a water C-H…O water hydrogen bond is 4.36 kcal/mol more stable than the methane C-H…O water interaction, the water-water hydrogen bond is only 2.06 kcal/mol more stable than the imidazole Ce?H…O water hydrogen bond. Neglecting this latter hydrogen bonding interaction is obviously unacceptable. We next compare the potential energy surfaces for the imidazole Ce?H…O water and imidazole Nd?H…O hydrogen bonded complexes computed at the MP2/6-31++G(2d,2p) level of theory with the potential energy surface computed using the AMBER molecular mechanics program and forcefields. While the Weiner et al and Cornell et al AMBER forcefields reasonably account for the imidazole N-H…O water interaction, these forcefields do not adequately account for the imidazole Ce?H…O water hydrogen bond. A forcefield modification is offered that results in excellent agreement between the ab initio and molecular mechanics geometry and energy for this C-H…O hydrogen bonded complex.  相似文献   

18.
The enthalpy of hydrogen-bond formation between guanine (G) and cytosine (C) in o-dichlorobenzene and in chloroform at 25°C has been determined by direct calorimetric measurement. We derivatized 2′-deoxyguanosine and 2′-deoxycytidine at the 5′- and 3′-hydroxyls with triisopropylsilyl groups; these groups increase the solubility of the nucleic acid bases in nonaqueous solvents. Such derivatization also prevents the ribose hydroxyls from forming hydrogen bonds. Consequently, hydrogen-bond formation in our system is primarily between the bases, and to a lesser extent, between base and solvent, and can be measured directly with calorimetry. To obtain the data on base-pair formation, we first took into account the contributions from self-association of each base, and where possible, have determined the ΔH of self-association. From isoperibolic titration calorimetry, our measured ΔH of C2 formation in chloroform is ?1.7 kcal/mol of C. Our measured ΔH of C:G base-pair formation in o-dichlorobenzene is ?6.65 ± 0.32 kcal/mol. Since o-dichlorobenzene does not form hydrogen bonds, the ΔH of C:G base-pair formation in this solvent represents the ΔH of the hydrogen-bonding interaction of C with G in a nonassociating solvent. In contrast, our measured ΔH of C:G base-pair formation in chloroform is ?5.77 ± 0.20 kcal/mol; thus, the absolute value of the enthalpy of hydrogen bonding in the C:G base pair is greater in o-dichlorobenzene than in chloroform. Since chloroform is a solvent known to form hydrogen bonds, the decrease in enthalpic contribution to C:G base pairing in chloroform is due to the formation of hydrogen bonds between the bases and the solvent. The ΔH of hydrogen bonding of G with C reported here differs from previous indirect estimates: Our measurements indicate the ΔH is 50% less in magnitude than the ΔH based on spectroscopic measurements of the extent of interaction. We have also observed that the enthalpy of hydrogen bonding of C with G in chloroform is greater when G is in excess than when C is in excess. This increased heat is due to the formation of C:Gn > 1 complexes that we have observed using 1H-nmr. Although C:G2 structures have previously been observed in triple-stranded polymeric nucleic acids, higher order structures have not been observed between C and G monomers in nonaqueous solvents until now. By using monomers as a model system to investigate hydrogen-bonding interactions in DNA and RNA, we have obtained the following results: A direct measurement of the ΔH of hydrogen bonding in the C:G complex in two nonaqueous solvents, and the first observation of C:Gn > 1 complexes between monomers. These results reinforce the importance of hydrogen bonding in the stabilization of various nucleic acid secondary and tertiary structures.  相似文献   

19.
Molecular mechanical energy refinement of double-helical pentanucleotide tetra-phosphates, d(CGCGC):d(GCGCG), dG5·dC5, d(TATAT):d(ATATA), and dA5 ·dT5 geometries, are presented in order to examine the energy required to open the Nl(purine) …? N3(pyrimidine) distance (base-pair opening) of a Watson-Crick base pair from its normal value of 3 Å to a value of 6 Å. The structural consequences of forcing base-pair opening is sequence dependent. For both dA5 ·dT5 and d(TATAT):d(ATATA), forcing the Nl (AdeKN3 (Thy) distance of the central base pair to a value of 6 Å slides the bases perpendicular to the helix axis forming a low-energy non-Watson-Crick base pair having an adenine amine hydrogen …? thymine carbonyl oxygen hydrogen bond. The two GC sequences behave differently from both AT sequences and differently from each other. Forcing the Nl(Gua) …? N3(Cyt) distance to 6 Å leads to unconventional structures in which hydrogen bonds are formed between the separated bases and the bases above or below them. These structures appear to be trapped in true local minima 6–10 kcal/mol higher in energy than the Watson-Crick structures. Preliminary simulations on d(CGCGC):d(GCGCG) in the Z geometry suggest the reason the Z form may be more refractory to proton exchange than the B form, consistent with experimental observations.  相似文献   

20.
Abstract

Single crystal X-ray diffraction techniques have been used to characterise the molecular structure of the title compound to 2.5Å resolution. The structure consists of ten standard Watson-Crick base pairs and two G.A mismatched base pairs. The purine-purine mismatches have guanine in the usual anti orientation with respect to the sugar and adenine in syn orientation. There are two hydrogen bonds formed between the mismatch bases, N-l and 0–6 of guanine with N-7 and N-6 of adenine respectively. The bulky purine-purine mismatches are accommodated with minor perturbation of the sugar-phosphate backbone. There is a slight improvement in base pair overlap at the mismatch sites. Details of the backbone conformation, base stacking interactions and hydration are presented and compared with those of the parent compound d(C-G-C-G-A-A-T-T-C-G-C-G).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号