首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
Molecular modeling and energy minimisation calculations have been used to investigate the interaction of chromium(III) complexes in different ligand environments with various sequences of B-DNA. The complexes are [Cr(salen)(H(2)O)(2)](+); salen denotes 1, 2 bis-salicylideneaminoethane, [Cr(salprn)(H(2)O)(2)](+); salprn denotes 1, 3 bis- salicylideneaminopropane, [Cr(phen)(3)](3+); phen denotes 1, 10 phenanthroline and [Cr(en)(3)](3+); en denotes ethylenediamine. All the chromium(III) complexes are interacted with the minor groove and major groove of d(AT)(12), d(CGCGAATTCGCG)(2) and d(GC)(12) sequences of DNA. The binding energy and hydrogen bond parameters of DNA-Cr complex adduct in both the groove have been determined using molecular mechanics approach. The binding energy and formation of hydrogen bonds between chromium(III) complex and DNA has shown that all complexes of chromium(III) prefer minor groove interaction as the favourable binding mode.  相似文献   

2.
In order to understand the role of coordinated ligands in controlling the biotoxicity of chromium (III), interactions of three types of chromium (III) complexes viz. trans-diaquo [1,2 bis (salicyledeneamino) ethane chromium (III) perchlorate, [(Cr(salen)(H(2)O)(2)](ClO(4)); tris (ethylenediamine) chromium (III) chloride, [Cr(en)(3)]Cl(3), and monosodium ethylene diamine tetraacetato monoaquo chromiate (III), [Cr(EDTA)(H(2)O)]Na with BSA has been investigated. Spectroscopic and equilibrium dialysis studies show that the two cationic complexes Cr(salen)(H(2)O)(+)(2) and Cr(en)(3+)(3) bind to the protein with a protein-metal ratio of 1:8 and 1:4. The anionic complex Cr(EDTA)(H(2)O)(-) binds to the protein with a protein-metal ratio of 1:2. The binding constant K(b) as estimated from the fluorescence quenching studies has been found to be 7.6 +/- 0.4 x 10(3) M(-1), 3.1 +/- 0.2 x 10(2) M(-1), and 1.8 +/- 0.2 x 10(2) M(-1) for Cr(salen)(H(2)O)(+)(2), Cr(en)(3+)(3), and Cr(EDTA)(H(2)O)(-) respectively indicating that the thermodynamic stability of protein-chromium complex is Cr(salen)(H(2)O)(+)(2) > Cr(en)(3+)(3) approximately Cr(EDTA)(H(2)O)(-). The complexes Cr(salen)(H(2)O)(+)(2) and Cr(EDTA)(H(2)O)(-) in the presence of hydrogen peroxide have been found to bring about protein degradation, whereas Cr(en)(3+)(3) does not bring about any protein damage. This clearly shows that the nature of the chromium (III) complex plays a major role in the biotoxicity of chromium (III).  相似文献   

3.
Mixed ligand ruthenium(II) complexes containing an amino acid (AA) and 1,10-phenanthroline (phen), i.e. [Ru(AA)(phen)2]n+ (n=1,2, AA=glycine (gly), l-alanine (l-ala), l-arginine (l-arg)) have been synthesized. The interactions of these complexes and [Ru(phen)3]2+ with DNA have been examined by absorption, luminescence, and circular dichroism spectroscopic methods. Absorption spectral properties revealed that [Ru(AA)(phen)2]+ (AA=gly, l-ala) interacted with CT-DNA by the electrostatic binding mode. [Ru(l-arg)(phen)2]2+ exhibited the greatest hypochromicity, red shift, and binding constant, indicating that this complex may partially intercalate into the base-pairs of DNA. These results were also suggested by luminescence spectroscopy. CD spectral properties have been examined to understand the detailed interactions of the ruthenium(II) complexes with artificial DNA. In the case of Δ-[Ru(l-arg)(phen)2]2+, the solution on adding [poly(dG-dC)]2 exhibited two well-defined positive peaks, which the shorter and longer wavelength peaks were assigned as originating from the major and the minor groove binding modes, respectively. Then, the solution on adding [poly(dA-dT)]2 exhibited only one positive peak, which was assigned as a peak corresponding to the minor groove binding mode.  相似文献   

4.
The present study reports a detailed investigation into the interaction of [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ with transferrin, the key protein for the transport of Fe3+ in blood plasma; its cycle holds promise as an attractive system for strategies of drug targeting to tumor tissues. This can allow us to understand further the role of both complexes as sensitizers in photodynamic therapy (PDT). Chromium(III) complexes, [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+, (phen = 1,10-phenanthroline and dppz = dipyridophenazine), where dppz is a planar bidentate ligand with an extended π system, have been found to bind strongly with apotransferrin (apoTf) with an intrinsic binding constant, Kb, of (1.8 ± 0.3) × 105 M− 1 and (1.1 ± 0.1) × 105 M− 1 at 299 K, for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+, respectively. The interactions of apoTf with the different Cr(III) complexes were assessed employing UV-visible absorption, fluorescence and circular dichroism spectroscopy. The relative fluorescence intensity of the protein decreased when the increasing concentration of Cr(III) complex was added, suggesting that perturbation around the Trp and Tyr residues took place. The analysis of the thermodynamic parameters ΔG, ΔH, ΔS indicated that the presence of the Cr(III) complex stabilizes the protein with a strong entropic contribution. The binding distances and transfer efficiencies for apoTf-[Cr(phen)2(dppz)]3+ and apoTf-[Cr(phen)3]3+ binding reactions were calculated according to Föster theory of non-radiation energy transfer. All these experimental results suggest that [Cr(phen)2(dppz)]3+ and [Cr(phen)3]3+ bind strongly to apoTf indicating that this protein could act as a carrier of these complexes for further applications in PDT.  相似文献   

5.
BackgroundTransferrin is an iron-binding blood plasma glycoprotein that controls the level of free iron in biological fluids. This protein has been deeply studied in the past few years because of its potential use as a strategy of drug targeting to tumor tissues. Chromium complex, [Cr(phen)3]3+ (phen = 1,10-phenanthroline), has been proposed as photosensitizers for photodynamic therapy (PDT). Thus, we analyzed the binding of chromium complex, [Cr(phen)3]3+, to transferrin for a potential delivery of this diimine complex to tumor cells for PDT.MethodsThe interaction between [Cr(phen)3]3+ and holotransferrin (holoTf) was studied by fluorescence quenching technique, circular dichroism (CD) and ultraviolet (UV)–visible spectroscopy.Results[Cr(phen)3]3+ binds strongly to holoTf with a binding constant around 105 M−1, that depends on the pH. The thermodynamic parameters indicated that hydrophobic interactions played a major role in the binding processes. The CD studies showed that there are no conformational changes in the secondary and tertiary structures of the protein.ConclusionsThese results suggest that the binding process would occur in a site different from the specific iron binding sites of the protein and would be the same in both protein states. As secondary and tertiary structures of transferrin do not show remarkable changes, we propose that the TfR could recognize the holoTf despite having a chromium complex associated.General significanceUnderstanding the interaction between [Cr(phen)3]3+ with transferrin is relevant because this protein could be a delivery agent of Cr(III) complex to tumor cells. This can allow us to understand further the role of Cr(III) complex as sensitizer in PDT.  相似文献   

6.
A series of new heteroleptic, tris(polypyridyl)chromium(III) complexes, [Cr(phen)2L]3+ (L = substituted phenanthrolines or bipyridines), has been prepared and characterized, and their photophyical properties in a number of solvents have been investigated. X-ray crystallography measurements confirmed that the cationic (3+) units contain only one ligand L plus two phenanthroline ligands. Electrochemical and photophysical data showed that both ground state potentials and lifetime decays are sensitive to ligand structure and the nature of the solvent with the exception of compounds containing L = 5-amino-1,10-phenanthroline (aphen) and 2,2′-bipyrimidine (bpm). Addition of electron-donating groups in the ligand structure shifts redox potentials to more negative values than those observed for the parent compound, [Cr(phen)3]3+. Emission decays show a complex dependence with the solvent. The longest lifetime was observed for [Cr(phen)2(dip)]3+ (dip = 4,7-diphenylphenanthroline) in air-free aqueous solutions, τ = 273 μs. Solvent effects are explained in terms of the affinity of hydrophobic complexes for non-polar solvent molecules and the solvent microstructure surrounding chromium units.  相似文献   

7.
Abstract

The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5′-mono- and -triphosphates in D2O solution at Ph′=3 were measured. The paramagnetic probes were [Cr(III)(H2O) 6]3+, [Cr(III)(H2O)3 (HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III) (H2O)3(UTP)?, while the matrix nucleotides (0.1 M) were H2AMP, HIMP?, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]?/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(α,β)], [Cr(III)(NH3)4(HPP)(α,β)], [Co(III)(NH3)3(H2PPP)(α,βγ)] and [Co(III)(NH3)4(HPP)(α,β)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(α,βγ)] complexes as well as the structures of the outer sphere [Cr(III) (H2O)6]3+-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)? species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(α,βγ)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7) (O…N = 2.82 Å). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2′)H group and the adenine N(3) (O…N = 2.80 Å) as well as phosphate oxygen atoms and a water molecule (O…O = 2.47 Å). The metal center has an almost regular octahedral coordination geometry.

The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar “anti” conformation around the N(9)-C(l′) glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)? complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O…O = 2.63 Å O…N = 2.72, 2.70 Å). For the H2AMP complex, the [Cr(III) (H2O)c]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s?1 (H(2)) for HIMP?. These results suggest that the dynamic relaxation effects can be only partially understood with molecular mechanics computations, although the success of the geometry calculations suggests that future efforts in the development of computational methods are justified.  相似文献   

8.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

9.
Abstract

Metal ions binding to proteins regulate the functions of proteins and may also lead to structural changes. In this communication we demonstrate the interaction and subsequent conformational changes induced in pig gastric mucin (PGM) upon binding to certain chromium(III) complexes like, [Cr(salen)(H2O)2](ClO4) (1), [Cr(en)3]Cl3 (2) and [Cr(EDTA)(H2O)]Na (3) which vary in charge and ionic character. Complexes 1 and 3 have been shown to interact coordinately with PGM whereas complex 2 binds through electrostatic interaction and hydrogen bonding. Steady state fluorescence experiment reveals that at lower concentration of complex 2 there is partial quenching of the tyrosine emission, whereas at higher concentration of the complex the emission intensity is enhanced. On the other hand with complexes 1 and 3 a decrease in fluorescence intensity was observed. PGM viscosity was found to decrease in the presence of complex 1 and 3 due to the formation of flexible fibres through coordinate interaction. Complex 2 was found to facilitate metal induced intertangling of PGM fibres which tends to stabilize the interaction and leads to sol-gel transition with subsequent increase in viscosity. A significant change in CD spectrum of PGM was observed in the presence of complex 2 where random coil spectrum became typical of a α-helical structure with 80% alpha helix content. In the case of complexes 1 and 3 only minor changes in the amplitude of the spectrum were observed. Histochemical analysis supports the contention that complex 2 favors the oligomerisation of PGM and leads to the formation of aggregated mass of macromolecules.  相似文献   

10.
The cytotoxicity of certain Cr(III) complexes, such as [Cr(salen)(H(2)O)(2)](+), [Cr(edta)(H(2)O)](-), [Cr(en)(3)](3+), [Cr(ox)(3)](3-), [Cr(pic)(3)], and CrCl(3), which differ in ionic character and ligand environment in human dermal skin fibroblasts, has been studied. After 72 h of exposure to 100 microM doses of chromium(III) complexes, the order in which the complexes had an inhibitory effect on cell viability was [Cr(en)(3)](3+) > [Cr(salen)(H(2)O)(2)](+) > [Cr(ox)(3)](3-) > [Cr(edta)(H(2)O)](-) > [Cr(pic)(3)] > CrCl(3). Based on viability studies it was confirmed that [Cr(en)(3)](3+), a triply charged cation, inhibits cell proliferation, and therefore, it was chosen to carry out further investigations. [Cr(en)(3)](3+), at a dose of 50 microM, was found to bring about surface morphological changes, evidenced by cellular blebbing and spike formation accompanied by nuclear damage. TEM analysis revealed substantial intracellular damage to fibroblasts in terms of the formation of apoptotic bodies and chromatin condensation, thus reflecting cell death. FACS analysis further revealed DNA damage by formation of a sub-G(1) peak with 84.2% DNA as aneuploid DNA and arrest of the G(2) / M phase of the cell cycle. Cellular DNA damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in DNA isolated from [Cr(en)(3)](3+)-treated fibroblasts. The proposed mechanism suggests the plausible role of Cr(V), formed as a result of oxidation of Cr(III) by cellular oxidative enzymes, in the cytotoxic response. Consequently, any Cr(III) complex that is absorbed by cells and can be oxidized to Cr(V) must be considered a potential carcinogen. This has potential implications for the increased use of Cr(III) complexes as dietary supplements and highlights the need to consider the cytotoxicity and genotoxicity of a variety of Cr(III) complexes and to understand the potential hazards of Cr(III) complexes encountered in research laboratories.  相似文献   

11.
Due to the key role of DNA in cell life and pathological processes, the design of specific chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention.The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz = dipyridophenazine, phen = 1,10-phenanthroline), where dppz is a planar bidentate ligand with an extended π system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9 ± 0.3) × 105 M1 and (1.1 ± 0.1) × 105 M1, respectively. The binding properties to DNA were investigated by UV-visible (UV-Vis) absorption spectroscopy and electrophoretic studies. UV-Vis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).  相似文献   

12.
The present study reports a detailed investigation with the interaction of [Cr(phen)2(dppz)]3+ with serum albumins, the key protein for the transport of drugs in the blood plasma, which allows us to understand further the role of [Cr(phen)2(dppz)]3+ as sensitizer in Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz = dipyridophenazine and phen = 1,10-phenanthroline), where dppz is a planar bidentate ligand with an extended π system, has been found to bind strongly with bovine and human serum albumins (BSA and HSA) with an intrinsic binding constants, Kb, of (1.7 ± 0.3) × 105 M− 1 and (2.2 ± 0.3) × 105 M− 1 at 295 K, respectively. The interactions of serum albumins with [Cr(phen)2(dppz)]3+ were assessed employing fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy. The serum albumins-[Cr(phen)2(dppz)]3+ interactions caused conformational changes with the loss of helical stability of the protein and local perturbation in the domain IIA binding pocket. The relative fluorescence intensity of the albumin (BSA or HSA) bound to the Cr(III) complex decreased, suggesting that perturbation around the Trp 214 residue took place. The analysis of the thermodynamic parameters ΔG, ΔH, ΔS indicated that the hydrophobic interactions played a major role in both BSA-Cr(III) and HSA-Cr(III) association processes. The binding distances and transfer efficiencies for BSA-Cr(III) and HSA-Cr(III) binding reactions were calculated according to the Föster theory of non-radiation energy transfer. All these experimental results suggests that [Cr(phen)2(dppz)]3+ binds to serum albumins, by which these proteins could act as carriers of this complex for further applications in PDT.  相似文献   

13.
Abstract

The chemistry of Co(II) complexes showing efficient light induced DNA cleavage activity, binding propensity to calf thymus DNA and antibacterial PDT is summarized in this article. Complexes of formulation [Co(mqt)(B)2]ClO4 1–3 where mqt is 4-methylquinoline-2-thiol and B is N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz 3) have been prepared and characterized. The DNA-binding behaviors of these three complexes were explored by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes 1, 2 and 3 were determined to be 1.6?×?103?M?1, 1.1?×?104?M?1 and 6.4?×?104?M?1 respectively. The experimental results suggest that these complexes interact with DNA through groove binding mode. The complexes show significant photocleavage of supercoiled (SC) DNA proceeds via a type-II process forming singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against E. coli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.  相似文献   

14.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

15.
A preparative procedure of potentially wide applicability is described for the synthesis of previously unreported tris(heteroleptic) [Cr(diimine)3]3+ complexes. The synthetic scheme involves the sequential addition of three different diimine ligands, and employs CrCl3 · 6H2O as the initial Cr(III) reagent. The synthesis and characterization of the complexes [Cr(TMP)(phen)(diimine′)]3+ are reported (where TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline, phen = 1,10-phenanthroline; and diimine′ is either bpy = 2,2′-bipyridine, Me2bpy = 4,4′-dimethyl-2,2′-bipyridine, 5-Clphen = 5-chloro-1,10-phenanthroline, or DPPZ = dipyridophenazine). Chiral capillary electrophoresis and electrospray mass spectrometry were essential aids in determining the presence or absence of diimine ligand scrambling. Utilizing emission and electrochemical data obtained on these compounds, the oxidizing power of the lowest lying excited state (2Eg(Oh)) was calculated, and was found to vary in a systematic fashion with diimine ligand type.  相似文献   

16.
The binding modes of the [Ru(II)(1,10-phenanthroline)(L1L2) dipyrido[3,2-a:2′,3′-c]phenazine]2+ {[Ru(phen)(py) Cl dppz]+ (L1 = Cl, L2 = pyridine) and ([Ru(phen)(py)2dppz]2+ (L1 = L2 = pyridine)} to native DNA is compared to that of the [Ru(II)(1,10-phenanthroline)2dipyrido[3,2-a:2′,3′-c]phenazine]2+ complex ([Ru(phen)2dppz]2+) by various spectroscopic and hydrodynamic methods including electric absorption, linear dichroism (LD), fluorescence spectroscopy, and viscometric titration. All measured properties, including red-shift and hypochromism in the dppz absorption band, nearly perpendicular molecular plane of the dppz ligand with respect to the local DNA helix axis, prohibition of the ethidium binding, the light switch effect and binding stoichiometry, increase in the viscosity upon binding to DNA, increase in the melting temperature are in agreement with classical intercalation of dppz ligand of the [Ru(phen)2dppz]2+ complex, in which both phenanthroline ligand anchored to the DNA phosphate groups by electrostatic interaction. [Ru(phen)(py)2 dppz]2+ and [Ru(phen)(py) Cl dppz]+ complexes had one of the phenanthroline ligand replaced by either two pyridine ligands or one pyridine plus a chlorine ion. They exhibited similar protection from water molecules, interaction with DNA bases, and occupying site that is common with ethidium. The dppz ligand of these two Ru(II) complex were greatly tilted relative to the DNA helix axis, suggesting that the dppz ligand resides inside the DNA and is not perpendicular relative to the DNA helix axis. These observation suggest that anchoring the [Ru(phen)2dppz]2+complex by both phenanthroline is essential for the dppz ligand to be classically intercalated between DNA base-pairs.  相似文献   

17.
The interaction of three types of chromium(III) complexes, [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]- with AGP has been investigated. [Cr(salen) (H2O2]+, [Cr(en)3]3+ and [Cr(EDTA) (H2O]- bind to Human alpha1-acid glycoprotein with a protein:metal ratio of 1:8, 1:6, and 1:4, respectively. The binding constant, K(b) was estimated to be 1.37 +/- 0.12 x 10(5) M(-1), 1.089 +/- 0.05 x 10(5) M(-1) and 5.3 +/- 0.05 x 10(4) M(-1) for [Cr(salen) (H2O2]+, [Cr(en)3]3+, and [Cr(EDTA) (H2O)]-, respectively. [Cr(en)3]3+ has been found to induce structural transition of AGP from the native twisted beta sheet to a more compact alpha-helix. The complexes, [Cr(salen) (H2O2]+ and [Cr(EDTA) (H2O]-, in the presence of H2O2, have been found to bring about nonspecific cleavage of AGP, whereas [Cr(en)3]3+ does not bring about any protein damage. Treatment of [Cr(salen) (H2O)2]+-protein adduct with iodosyl benzene on the other hand led to site specific cleavage of the protein. These results clearly demonstrate that protein damage brought about by chromium(III) complexes depends on the nature of the coordinated ligand, nature of the metal complex, and the nature of the oxidant.  相似文献   

18.
Several new Cu-hippurate derivative-phenanthroline ternary complexes have been prepared. The X-ray structure of one of them, [Cu(hip)(phen)2]+·(hip) (2) (where hip is hippurate and phen is 1,10-phenanthroline) has been solved. The structure of this new compound shows important differences (3D-pattern) to other similar related complexes (2D-pattern). A study of the biological activity of [Cu(hip)(phen)2]+·(hip)·2H2O (2), [Cu(BGG)(phen)2]+·(BGG)·6H2O (3), [Cu(BIGG)2(phen)](H2O) (4) and [Cu(I-hip)(bpy)2]+·(I-hip)·3.5H2O (5) (where I-hip is ortho-iodohippurate, BGG corresponds to benzoylglycilglycine, and BIGG is ortho-iodobenzoylglycilglycine) is included and compared with the anti-proliferative activity of [Cu(I-hip)(phen)2]+·(I-hip)·7H2O (1) previously described, resulting in a greater cytotoxic activity of the compounds with 1,10-phenanthroline instead of those with 2,2′-bipyridyl, in the same way that removing iodine substitution or lengthening the peptidic chain diminishes the activity of compounds compared with 1. The presence of an ortho-iodine group and the direct bond between Ar-CO and glycine moieties yield to the best results.  相似文献   

19.
A chromium(III) complex, transdiaqua [N, N'-propylenebis(salicylideneimino)chromium(III)]perchlorate ([Cr(salprn)(H2O)(2)]ClO(4)) in the presence of sodium azide and upon photoexcitation was found to bring about non-selective cleavage of bovine serum albumin (BSA). Electron paramagnetic resonance (EPR) evidence has been obtained for the formation of a Cr(V) species upon photolysis of a solution containing the chromium(III) complex and sodium azide. This Cr(V) species non-selectively cleaves BSA. The fluorescence excitation spectrum of BSA-[Cr(salprn)(H2O)(2)]+ adduct showed a band at lambda(max)(ex) nm due to charge transfer transition of the chromium(III) complex as well as a prominent band at 290 nm attributable to tryptophan absorption. This indicated an efficient Forster type fluorescence energy transfer (FRET) from the tryptophan residues to the chromium(III) complex indicating that the Cr(III) complex binds in the vicinity of the tryptophan residue.  相似文献   

20.
A UV-Vis absorption study was performed in order to elucidate the electronic energy levels of three tetragonal chromium (III) complexes, namely trans-[Cr(en)2(CN)2]ClO4, trans-[Cr(cyclam)(CN)2]ClO4, and trans-[Cr(NH3)4(CN)2]ClO4. The absorption spectra of the preceding complexes have been analyzed via Gaussian analysis to locate the quartet band maxima of the tetragonal components. The deconvoluted band maxima were then fitted with the tetragonal energy matrices of d3 configuration with full configuration interaction, neglecting spin-orbit interaction. The ligand field parameters Dq, Dt, and Ds along with the electron correlation parameters have been extracted via the fitting procedure. The significance of these parameters and the translated angular overlap model parameters has been discussed. We have also uncovered in the spectrum of the ethylenediamine complex the low intensity doublet absorption bands and a high intensity charge transfer band which have been tentatively assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号